forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
307 lines (249 loc) · 9.14 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Utility functions for KeypointNet.
These are helper / tensorflow related functions. The actual implementation and
algorithm is in main.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import os
import re
import tensorflow as tf
import tensorflow.contrib.slim as slim
import time
import traceback
class TrainingHook(tf.train.SessionRunHook):
"""A utility for displaying training information such as the loss, percent
completed, estimated finish date and time."""
def __init__(self, steps):
self.steps = steps
self.last_time = time.time()
self.last_est = self.last_time
self.eta_interval = int(math.ceil(0.1 * self.steps))
self.current_interval = 0
def before_run(self, run_context):
graph = tf.get_default_graph()
return tf.train.SessionRunArgs(
{"loss": graph.get_collection("total_loss")[0]})
def after_run(self, run_context, run_values):
step = run_context.session.run(tf.train.get_global_step())
now = time.time()
if self.current_interval < self.eta_interval:
self.duration = now - self.last_est
self.current_interval += 1
if step % self.eta_interval == 0:
self.duration = now - self.last_est
self.last_est = now
eta_time = float(self.steps - step) / self.current_interval * \
self.duration
m, s = divmod(eta_time, 60)
h, m = divmod(m, 60)
eta = "%d:%02d:%02d" % (h, m, s)
print("%.2f%% (%d/%d): %.3e t %.3f @ %s (%s)" % (
step * 100.0 / self.steps,
step,
self.steps,
run_values.results["loss"],
now - self.last_time,
time.strftime("%a %d %H:%M:%S", time.localtime(time.time() + eta_time)),
eta))
self.last_time = now
def standard_model_fn(
func, steps, run_config=None, sync_replicas=0, optimizer_fn=None):
"""Creates model_fn for tf.Estimator.
Args:
func: A model_fn with prototype model_fn(features, labels, mode, hparams).
steps: Training steps.
run_config: tf.estimatorRunConfig (usually passed in from TF_CONFIG).
sync_replicas: The number of replicas used to compute gradient for
synchronous training.
optimizer_fn: The type of the optimizer. Default to Adam.
Returns:
model_fn for tf.estimator.Estimator.
"""
def fn(features, labels, mode, params):
"""Returns model_fn for tf.estimator.Estimator."""
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
ret = func(features, labels, mode, params)
tf.add_to_collection("total_loss", ret["loss"])
train_op = None
training_hooks = []
if is_training:
training_hooks.append(TrainingHook(steps))
if optimizer_fn is None:
optimizer = tf.train.AdamOptimizer(params.learning_rate)
else:
optimizer = optimizer_fn
if run_config is not None and run_config.num_worker_replicas > 1:
sr = sync_replicas
if sr <= 0:
sr = run_config.num_worker_replicas
optimizer = tf.train.SyncReplicasOptimizer(
optimizer,
replicas_to_aggregate=sr,
total_num_replicas=run_config.num_worker_replicas)
training_hooks.append(
optimizer.make_session_run_hook(
run_config.is_chief, num_tokens=run_config.num_worker_replicas))
optimizer = tf.contrib.estimator.clip_gradients_by_norm(optimizer, 5)
train_op = slim.learning.create_train_op(ret["loss"], optimizer)
if "eval_metric_ops" not in ret:
ret["eval_metric_ops"] = {}
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=ret["predictions"],
loss=ret["loss"],
train_op=train_op,
eval_metric_ops=ret["eval_metric_ops"],
training_hooks=training_hooks)
return fn
def train_and_eval(
model_dir,
steps,
batch_size,
model_fn,
input_fn,
hparams,
keep_checkpoint_every_n_hours=0.5,
save_checkpoints_secs=180,
save_summary_steps=50,
eval_steps=20,
eval_start_delay_secs=10,
eval_throttle_secs=300,
sync_replicas=0):
"""Trains and evaluates our model. Supports local and distributed training.
Args:
model_dir: The output directory for trained parameters, checkpoints, etc.
steps: Training steps.
batch_size: Batch size.
model_fn: A func with prototype model_fn(features, labels, mode, hparams).
input_fn: A input function for the tf.estimator.Estimator.
hparams: tf.HParams containing a set of hyperparameters.
keep_checkpoint_every_n_hours: Number of hours between each checkpoint
to be saved.
save_checkpoints_secs: Save checkpoints every this many seconds.
save_summary_steps: Save summaries every this many steps.
eval_steps: Number of steps to evaluate model.
eval_start_delay_secs: Start evaluating after waiting for this many seconds.
eval_throttle_secs: Do not re-evaluate unless the last evaluation was
started at least this many seconds ago
sync_replicas: Number of synchronous replicas for distributed training.
Returns:
None
"""
run_config = tf.estimator.RunConfig(
keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
save_checkpoints_secs=save_checkpoints_secs,
save_summary_steps=save_summary_steps)
estimator = tf.estimator.Estimator(
model_dir=model_dir,
model_fn=standard_model_fn(
model_fn,
steps,
run_config,
sync_replicas=sync_replicas),
params=hparams, config=run_config)
train_spec = tf.estimator.TrainSpec(
input_fn=input_fn(split="train", batch_size=batch_size),
max_steps=steps)
eval_spec = tf.estimator.EvalSpec(
input_fn=input_fn(split="validation", batch_size=batch_size),
steps=eval_steps,
start_delay_secs=eval_start_delay_secs,
throttle_secs=eval_throttle_secs)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
def draw_circle(rgb, u, v, col, r):
"""Draws a simple anti-aliasing circle in-place.
Args:
rgb: Input image to be modified.
u: Horizontal coordinate.
v: Vertical coordinate.
col: Color.
r: Radius.
"""
ir = int(math.ceil(r))
for i in range(-ir-1, ir+2):
for j in range(-ir-1, ir+2):
nu = int(round(u + i))
nv = int(round(v + j))
if nu < 0 or nu >= rgb.shape[1] or nv < 0 or nv >= rgb.shape[0]:
continue
du = abs(nu - u)
dv = abs(nv - v)
# need sqrt to keep scale
t = math.sqrt(du * du + dv * dv) - math.sqrt(r * r)
if t < 0:
rgb[nv, nu, :] = col
else:
t = 1 - t
if t > 0:
# t = t ** 0.3
rgb[nv, nu, :] = col * t + rgb[nv, nu, :] * (1-t)
def draw_ndc_points(rgb, xy, cols):
"""Draws keypoints onto an input image.
Args:
rgb: Input image to be modified.
xy: [n x 2] matrix of 2D locations.
cols: A list of colors for the keypoints.
"""
vh, vw = rgb.shape[0], rgb.shape[1]
for j in range(len(cols)):
x, y = xy[j, :2]
x = (min(max(x, -1), 1) * vw / 2 + vw / 2) - 0.5
y = vh - 0.5 - (min(max(y, -1), 1) * vh / 2 + vh / 2)
x = int(round(x))
y = int(round(y))
if x < 0 or y < 0 or x >= vw or y >= vh:
continue
rad = 1.5
rad *= rgb.shape[0] / 128.0
draw_circle(rgb, x, y, np.array([0.0, 0.0, 0.0, 1.0]), rad * 1.5)
draw_circle(rgb, x, y, cols[j], rad)
def colored_hook(home_dir):
"""Colorizes python's error message.
Args:
home_dir: directory where code resides (to highlight your own files).
Returns:
The traceback hook.
"""
def hook(type_, value, tb):
def colorize(text, color, own=0):
"""Returns colorized text."""
endcolor = "\x1b[0m"
codes = {
"green": "\x1b[0;32m",
"green_own": "\x1b[1;32;40m",
"red": "\x1b[0;31m",
"red_own": "\x1b[1;31m",
"yellow": "\x1b[0;33m",
"yellow_own": "\x1b[1;33m",
"black": "\x1b[0;90m",
"black_own": "\x1b[1;90m",
"cyan": "\033[1;36m",
}
return codes[color + ("_own" if own else "")] + text + endcolor
for filename, line_num, func, text in traceback.extract_tb(tb):
basename = os.path.basename(filename)
own = (home_dir in filename) or ("/" not in filename)
print(colorize("\"" + basename + '"', "green", own) + " in " + func)
print("%s: %s" % (
colorize("%5d" % line_num, "red", own),
colorize(text, "yellow", own)))
print(" %s" % colorize(filename, "black", own))
print(colorize("%s: %s" % (type_.__name__, value), "cyan"))
return hook