forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
242 lines (204 loc) · 9.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
r"""Script for training model.
Simple command to get up and running:
python train.py --memory_size=8192 \
--batch_size=16 --validation_length=50 \
--episode_width=5 --episode_length=30
"""
import logging
import os
import random
import numpy as np
from six.moves import xrange
import tensorflow as tf
import data_utils
import model
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer('rep_dim', 128,
'dimension of keys to use in memory')
tf.flags.DEFINE_integer('episode_length', 100, 'length of episode')
tf.flags.DEFINE_integer('episode_width', 5,
'number of distinct labels in a single episode')
tf.flags.DEFINE_integer('memory_size', None, 'number of slots in memory. '
'Leave as None to default to episode length')
tf.flags.DEFINE_integer('batch_size', 16, 'batch size')
tf.flags.DEFINE_integer('num_episodes', 100000, 'number of training episodes')
tf.flags.DEFINE_integer('validation_frequency', 20,
'every so many training episodes, '
'assess validation accuracy')
tf.flags.DEFINE_integer('validation_length', 10,
'number of episodes to use to compute '
'validation accuracy')
tf.flags.DEFINE_integer('seed', 888, 'random seed for training sampling')
tf.flags.DEFINE_string('save_dir', '', 'directory to save model to')
tf.flags.DEFINE_bool('use_lsh', False,
'use locality-sensitive hashing '
'(NOTE: not fully tested)')
class Trainer(object):
"""Class that takes care of training, validating, and checkpointing model."""
def __init__(self, train_data, valid_data, input_dim, output_dim=None):
self.train_data = train_data
self.valid_data = valid_data
self.input_dim = input_dim
self.rep_dim = FLAGS.rep_dim
self.episode_length = FLAGS.episode_length
self.episode_width = FLAGS.episode_width
self.batch_size = FLAGS.batch_size
self.memory_size = (self.episode_length * self.batch_size
if FLAGS.memory_size is None else FLAGS.memory_size)
self.use_lsh = FLAGS.use_lsh
self.output_dim = (output_dim if output_dim is not None
else self.episode_width)
def get_model(self):
# vocab size is the number of distinct values that
# could go into the memory key-value storage
vocab_size = self.episode_width * self.batch_size
return model.Model(
self.input_dim, self.output_dim, self.rep_dim, self.memory_size,
vocab_size, use_lsh=self.use_lsh)
def sample_episode_batch(self, data,
episode_length, episode_width, batch_size):
"""Generates a random batch for training or validation.
Structures each element of the batch as an 'episode'.
Each episode contains episode_length examples and
episode_width distinct labels.
Args:
data: A dictionary mapping label to list of examples.
episode_length: Number of examples in each episode.
episode_width: Distinct number of labels in each episode.
batch_size: Batch size (number of episodes).
Returns:
A tuple (x, y) where x is a list of batches of examples
with size episode_length and y is a list of batches of labels.
"""
episodes_x = [[] for _ in xrange(episode_length)]
episodes_y = [[] for _ in xrange(episode_length)]
assert len(data) >= episode_width
keys = data.keys()
for b in xrange(batch_size):
episode_labels = random.sample(keys, episode_width)
remainder = episode_length % episode_width
remainders = [0] * (episode_width - remainder) + [1] * remainder
episode_x = [
random.sample(data[lab],
r + (episode_length - remainder) // episode_width)
for lab, r in zip(episode_labels, remainders)]
episode = sum([[(x, i, ii) for ii, x in enumerate(xx)]
for i, xx in enumerate(episode_x)], [])
random.shuffle(episode)
# Arrange episode so that each distinct label is seen before moving to
# 2nd showing
episode.sort(key=lambda elem: elem[2])
assert len(episode) == episode_length
for i in xrange(episode_length):
episodes_x[i].append(episode[i][0])
episodes_y[i].append(episode[i][1] + b * episode_width)
return ([np.array(xx).astype('float32') for xx in episodes_x],
[np.array(yy).astype('int32') for yy in episodes_y])
def compute_correct(self, ys, y_preds):
return np.mean(np.equal(y_preds, np.array(ys)))
def individual_compute_correct(self, y, y_pred):
return y_pred == y
def run(self):
"""Performs training.
Trains a model using episodic training.
Every so often, runs some evaluations on validation data.
"""
train_data, valid_data = self.train_data, self.valid_data
input_dim, output_dim = self.input_dim, self.output_dim
rep_dim, episode_length = self.rep_dim, self.episode_length
episode_width, memory_size = self.episode_width, self.memory_size
batch_size = self.batch_size
train_size = len(train_data)
valid_size = len(valid_data)
logging.info('train_size (number of labels) %d', train_size)
logging.info('valid_size (number of labels) %d', valid_size)
logging.info('input_dim %d', input_dim)
logging.info('output_dim %d', output_dim)
logging.info('rep_dim %d', rep_dim)
logging.info('episode_length %d', episode_length)
logging.info('episode_width %d', episode_width)
logging.info('memory_size %d', memory_size)
logging.info('batch_size %d', batch_size)
assert all(len(v) >= float(episode_length) / episode_width
for v in train_data.values())
assert all(len(v) >= float(episode_length) / episode_width
for v in valid_data.values())
output_dim = episode_width
self.model = self.get_model()
self.model.setup()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(max_to_keep=10)
ckpt = None
if FLAGS.save_dir:
ckpt = tf.train.get_checkpoint_state(FLAGS.save_dir)
if ckpt and ckpt.model_checkpoint_path:
logging.info('restoring from %s', ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
logging.info('starting now')
losses = []
random.seed(FLAGS.seed)
np.random.seed(FLAGS.seed)
for i in xrange(FLAGS.num_episodes):
x, y = self.sample_episode_batch(
train_data, episode_length, episode_width, batch_size)
outputs = self.model.episode_step(sess, x, y, clear_memory=True)
loss = outputs
losses.append(loss)
if i % FLAGS.validation_frequency == 0:
logging.info('episode batch %d, avg train loss %f',
i, np.mean(losses))
losses = []
# validation
correct = []
num_shots = episode_length // episode_width
correct_by_shot = dict((k, []) for k in xrange(num_shots))
for _ in xrange(FLAGS.validation_length):
x, y = self.sample_episode_batch(
valid_data, episode_length, episode_width, 1)
outputs = self.model.episode_predict(
sess, x, y, clear_memory=True)
y_preds = outputs
correct.append(self.compute_correct(np.array(y), y_preds))
# compute per-shot accuracies
seen_counts = [0] * episode_width
# loop over episode steps
for yy, yy_preds in zip(y, y_preds):
# loop over batch examples
yyy, yyy_preds = int(yy[0]), int(yy_preds[0])
count = seen_counts[yyy % episode_width]
if count in correct_by_shot:
correct_by_shot[count].append(
self.individual_compute_correct(yyy, yyy_preds))
seen_counts[yyy % episode_width] = count + 1
logging.info('validation overall accuracy %f', np.mean(correct))
logging.info('%d-shot: %.3f, ' * num_shots,
*sum([[k, np.mean(correct_by_shot[k])]
for k in xrange(num_shots)], []))
if saver and FLAGS.save_dir:
saved_file = saver.save(sess,
os.path.join(FLAGS.save_dir, 'model.ckpt'),
global_step=self.model.global_step)
logging.info('saved model to %s', saved_file)
def main(unused_argv):
train_data, valid_data = data_utils.get_data()
trainer = Trainer(train_data, valid_data, data_utils.IMAGE_NEW_SIZE ** 2)
trainer.run()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO)
tf.app.run()