forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
410 lines (346 loc) · 15.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Model implementations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta
from abc import abstractmethod
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.slim.python.slim.nets import inception
from tensorflow.contrib.slim.python.slim.nets import resnet_v2 as resnet_v2
from tensorflow.contrib.slim.python.slim.nets import resnet_utils as resnet_utils
def get_embedder(
embedder_strategy, config, images, is_training, reuse=False,
l2_normalize_embedding=True):
"""Returns an embedder based on config.
Args:
embedder_strategy: String, name of embedder version to return.
config: LuaTable object, training config.
images: 4-D float `Tensor` containing batch images.
is_training: Boolean or placeholder for boolean,
indicator for whether or not we're training.
reuse: Boolean: Reuse embedder variable scope.
l2_normalize_embedding: Boolean, whether or not to l2 normalize the
embedding.
Returns:
embedder: An `Embedder` object.
Raises:
ValueError: if unknown embedder_strategy specified.
"""
if embedder_strategy == 'inception_baseline':
pretrained_ckpt = config.inception_conv_ss_fc.pretrained_checkpoint
return InceptionBaselineEmbedder(
images,
pretrained_ckpt,
config.random_projection,
config.random_projection_dim)
strategy_to_embedder = {
'inception_conv_ss_fc': InceptionConvSSFCEmbedder,
'resnet': ResnetEmbedder,
}
if embedder_strategy not in strategy_to_embedder:
raise ValueError('unknown embedder_strategy', embedder_strategy)
embedding_size = config.embedding_size
l2_reg_weight = config.learning.l2_reg_weight
embedder = strategy_to_embedder[embedder_strategy](
config[embedder_strategy], images, embedding_size,
is_training, embedding_l2=l2_normalize_embedding,
l2_reg_weight=l2_reg_weight, reuse=reuse)
return embedder
def build_inceptionv3_graph(images, endpoint, is_training, checkpoint,
reuse=False):
"""Builds an InceptionV3 model graph.
Args:
images: A 4-D float32 `Tensor` of batch images.
endpoint: String, name of the InceptionV3 endpoint.
is_training: Boolean, whether or not to build a training or inference graph.
checkpoint: String, path to the pretrained model checkpoint.
reuse: Boolean, whether or not we are reusing the embedder.
Returns:
inception_output: `Tensor` holding the InceptionV3 output.
inception_variables: List of inception variables.
init_fn: Function to initialize the weights (if not reusing, then None).
"""
with slim.arg_scope(inception.inception_v3_arg_scope()):
_, endpoints = inception.inception_v3(
images, num_classes=1001, is_training=is_training)
inception_output = endpoints[endpoint]
inception_variables = slim.get_variables_to_restore()
inception_variables = [
i for i in inception_variables if 'global_step' not in i.name]
if is_training and not reuse:
init_saver = tf.train.Saver(inception_variables)
def init_fn(scaffold, sess):
del scaffold
init_saver.restore(sess, checkpoint)
else:
init_fn = None
return inception_output, inception_variables, init_fn
class InceptionBaselineEmbedder(object):
"""Produces pre-trained InceptionV3 embeddings."""
def __init__(self, images, pretrained_ckpt, reuse=False,
random_projection=False, random_projection_dim=32):
# Build InceptionV3 graph.
(inception_output,
self.inception_variables,
self.init_fn) = build_inceptionv3_graph(
images, 'Mixed_7c', False, pretrained_ckpt, reuse)
# Pool 8x8x2048 -> 1x1x2048.
embedding = slim.avg_pool2d(inception_output, [8, 8], stride=1)
embedding = tf.squeeze(embedding, [1, 2])
if random_projection:
embedding = tf.matmul(
embedding, tf.random_normal(
shape=[2048, random_projection_dim], seed=123))
self.embedding = embedding
class PretrainedEmbedder(object):
"""Base class for embedders that take pre-trained networks as input."""
__metaclass__ = ABCMeta
def __init__(self, config, images, embedding_size, is_training,
embedding_l2=True, l2_reg_weight=1e-6, reuse=False):
"""Constructor.
Args:
config: A T object holding training config.
images: A 4-D float32 `Tensor` holding images to embed.
embedding_size: Int, the size of the embedding.
is_training: Boolean, whether or not this is a training or inference-time
graph.
embedding_l2: Boolean, whether or not to l2 normalize the embedding.
l2_reg_weight: Float, weight applied to l2 weight regularization.
reuse: Boolean, whether or not we're reusing this graph.
"""
# Pull out all the embedder hyperparameters.
self._config = config
self._embedding_size = embedding_size
self._l2_reg_weight = l2_reg_weight
self._embedding_l2 = embedding_l2
self._is_training = is_training
self._reuse = reuse
# Pull out pretrained hparams.
pretrained_checkpoint = config.pretrained_checkpoint
pretrained_layer = config.pretrained_layer
pretrained_keep_prob = config.dropout.keep_pretrained
# Build pretrained graph.
(pretrained_output,
self._pretrained_variables,
self.init_fn) = self.build_pretrained_graph(
images, pretrained_layer, pretrained_checkpoint, is_training, reuse)
# Optionally drop out the activations.
pretrained_output = slim.dropout(
pretrained_output, keep_prob=pretrained_keep_prob,
is_training=is_training)
self._pretrained_output = pretrained_output
@abstractmethod
def build_pretrained_graph(self, images, layer, pretrained_checkpoint,
is_training, reuse):
"""Builds the graph for the pre-trained network.
Method to be overridden by implementations.
Args:
images: A 4-D tf.float32 `Tensor` holding images to embed.
layer: String, defining which pretrained layer to take as input
to adaptation layers.
pretrained_checkpoint: String, path to a checkpoint used to load
pretrained weights.
is_training: Boolean, whether or not we're in training mode.
reuse: Boolean, whether or not to reuse embedder weights.
Returns:
pretrained_output: A 2 or 3-d tf.float32 `Tensor` holding pretrained
activations.
"""
pass
@abstractmethod
def construct_embedding(self):
"""Builds an embedding function on top of images.
Method to be overridden by implementations.
Returns:
embeddings: A 2-d float32 `Tensor` of shape [batch_size, embedding_size]
holding the embedded images.
"""
pass
def get_trainable_variables(self):
"""Gets a list of variables to optimize."""
if self._config.finetune:
return tf.trainable_variables()
else:
adaptation_only_vars = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope=self._adaptation_scope)
return adaptation_only_vars
class ResnetEmbedder(PretrainedEmbedder):
"""Resnet TCN.
ResnetV2 -> resnet adaptation layers -> optional l2 normalize -> embedding.
"""
def __init__(self, config, images, embedding_size, is_training,
embedding_l2=True, l2_reg_weight=1e-6, reuse=False):
super(ResnetEmbedder, self).__init__(
config, images, embedding_size, is_training, embedding_l2,
l2_reg_weight, reuse)
def build_pretrained_graph(
self, images, resnet_layer, checkpoint, is_training, reuse=False):
"""See baseclass."""
with slim.arg_scope(resnet_v2.resnet_arg_scope()):
_, endpoints = resnet_v2.resnet_v2_50(
images, is_training=is_training, reuse=reuse)
resnet_layer = 'resnet_v2_50/block%d' % resnet_layer
resnet_output = endpoints[resnet_layer]
resnet_variables = slim.get_variables_to_restore()
resnet_variables = [
i for i in resnet_variables if 'global_step' not in i.name]
if is_training and not reuse:
init_saver = tf.train.Saver(resnet_variables)
def init_fn(scaffold, sess):
del scaffold
init_saver.restore(sess, checkpoint)
else:
init_fn = None
return resnet_output, resnet_variables, init_fn
def construct_embedding(self):
"""Builds an embedding function on top of images.
Method to be overridden by implementations.
Returns:
embeddings: A 2-d float32 `Tensor` of shape [batch_size, embedding_size]
holding the embedded images.
"""
with tf.variable_scope('tcn_net', reuse=self._reuse) as vs:
self._adaptation_scope = vs.name
net = self._pretrained_output
# Define some adaptation blocks on top of the pre-trained resnet output.
adaptation_blocks = []
adaptation_block_params = [map(
int, i.split('_')) for i in self._config.adaptation_blocks.split('-')]
for i, (depth, num_units) in enumerate(adaptation_block_params):
block = resnet_v2.resnet_v2_block(
'adaptation_block_%d' % i, base_depth=depth, num_units=num_units,
stride=1)
adaptation_blocks.append(block)
# Stack them on top of the resent output.
net = resnet_utils.stack_blocks_dense(
net, adaptation_blocks, output_stride=None)
# Average pool the output.
net = tf.reduce_mean(net, [1, 2], name='adaptation_pool', keep_dims=True)
if self._config.emb_connection == 'fc':
# Use fully connected layer to project to embedding layer.
fc_hidden_sizes = self._config.fc_hidden_sizes
if fc_hidden_sizes == 'None':
fc_hidden_sizes = []
else:
fc_hidden_sizes = map(int, fc_hidden_sizes.split('_'))
fc_hidden_keep_prob = self._config.dropout.keep_fc
net = tf.squeeze(net)
for fc_hidden_size in fc_hidden_sizes:
net = slim.layers.fully_connected(net, fc_hidden_size)
if fc_hidden_keep_prob < 1.0:
net = slim.dropout(net, keep_prob=fc_hidden_keep_prob,
is_training=self._is_training)
# Connect last FC layer to embedding.
embedding = slim.layers.fully_connected(net, self._embedding_size,
activation_fn=None)
else:
# Use 1x1 conv layer to project to embedding layer.
embedding = slim.conv2d(
net, self._embedding_size, [1, 1], activation_fn=None,
normalizer_fn=None, scope='embedding')
embedding = tf.squeeze(embedding)
# Optionally L2 normalize the embedding.
if self._embedding_l2:
embedding = tf.nn.l2_normalize(embedding, dim=1)
return embedding
def get_trainable_variables(self):
"""Gets a list of variables to optimize."""
if self._config.finetune:
return tf.trainable_variables()
else:
adaptation_only_vars = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope=self._adaptation_scope)
return adaptation_only_vars
class InceptionEmbedderBase(PretrainedEmbedder):
"""Base class for embedders that take pre-trained InceptionV3 activations."""
def __init__(self, config, images, embedding_size, is_training,
embedding_l2=True, l2_reg_weight=1e-6, reuse=False):
super(InceptionEmbedderBase, self).__init__(
config, images, embedding_size, is_training, embedding_l2,
l2_reg_weight, reuse)
def build_pretrained_graph(
self, images, inception_layer, checkpoint, is_training, reuse=False):
"""See baseclass."""
# Build InceptionV3 graph.
inception_output, inception_variables, init_fn = build_inceptionv3_graph(
images, inception_layer, is_training, checkpoint, reuse)
return inception_output, inception_variables, init_fn
class InceptionConvSSFCEmbedder(InceptionEmbedderBase):
"""TCN Embedder V1.
InceptionV3 (mixed_5d) -> conv layers -> spatial softmax ->
fully connected -> optional l2 normalize -> embedding.
"""
def __init__(self, config, images, embedding_size, is_training,
embedding_l2=True, l2_reg_weight=1e-6, reuse=False):
super(InceptionConvSSFCEmbedder, self).__init__(
config, images, embedding_size, is_training, embedding_l2,
l2_reg_weight, reuse)
# Pull out all the hyperparameters specific to this embedder.
self._additional_conv_sizes = config.additional_conv_sizes
self._conv_hidden_keep_prob = config.dropout.keep_conv
self._fc_hidden_sizes = config.fc_hidden_sizes
self._fc_hidden_keep_prob = config.dropout.keep_fc
def construct_embedding(self):
"""Builds a conv -> spatial softmax -> FC adaptation network."""
is_training = self._is_training
normalizer_params = {'is_training': is_training}
with tf.variable_scope('tcn_net', reuse=self._reuse) as vs:
self._adaptation_scope = vs.name
with slim.arg_scope(
[slim.layers.conv2d],
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=slim.regularizers.l2_regularizer(
self._l2_reg_weight),
biases_regularizer=slim.regularizers.l2_regularizer(
self._l2_reg_weight)):
with slim.arg_scope(
[slim.layers.fully_connected],
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=slim.regularizers.l2_regularizer(
self._l2_reg_weight),
biases_regularizer=slim.regularizers.l2_regularizer(
self._l2_reg_weight)):
# Input to embedder is pre-trained inception output.
net = self._pretrained_output
# Optionally add more conv layers.
for num_filters in self._additional_conv_sizes:
net = slim.layers.conv2d(
net, num_filters, kernel_size=[3, 3], stride=[1, 1])
net = slim.dropout(net, keep_prob=self._conv_hidden_keep_prob,
is_training=is_training)
# Take the spatial soft arg-max of the last convolutional layer.
# This is a form of spatial attention over the activations.
# See more here: http://arxiv.org/abs/1509.06113.
net = tf.contrib.layers.spatial_softmax(net)
self.spatial_features = net
# Add fully connected layers.
net = slim.layers.flatten(net)
for fc_hidden_size in self._fc_hidden_sizes:
net = slim.layers.fully_connected(net, fc_hidden_size)
if self._fc_hidden_keep_prob < 1.0:
net = slim.dropout(net, keep_prob=self._fc_hidden_keep_prob,
is_training=is_training)
# Connect last FC layer to embedding.
net = slim.layers.fully_connected(net, self._embedding_size,
activation_fn=None)
# Optionally L2 normalize the embedding.
if self._embedding_l2:
net = tf.nn.l2_normalize(net, dim=1)
return net