-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
269 lines (210 loc) · 8.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
Run the trainer and tester
"""
import torch
import numpy as np
from scipy.io.wavfile import write as wav_write
from tools_for_model import near_avg_index, max_index, min_index, Bar, cal_pesq, cal_stoi
from config import fs, info, mode
import soundfile as sf
import os
def model_train(model, optimizer, train_loader, epoch, DEVICE):
# initialization
train_loss = 0
batch_num = 0
# train
model.train()
for inputs, labels in Bar(train_loader):
batch_num += 1
# to cuda
inputs = inputs.float().to(DEVICE)
labels = labels.float().to(DEVICE)
_, _, real_spec, img_spec, outputs = model(inputs)
loss = model.loss(outputs, labels, real_spec, img_spec)
# loss = model.pmsqe_loss(labels, outputs)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss
train_loss /= batch_num
return train_loss
def model_validate(model, validation_loader, dir_to_save, writer, epoch, DEVICE):
# initialization
batch_num = 0
validation_loss = 0
avg_pesq = 0
avg_stoi = 0
all_batch_input = []
all_batch_label = []
all_batch_output = []
all_batch_real_spec = []
all_batch_img_spec = []
all_batch_pesq = []
f_pesq = open(dir_to_save + '/pesq_epoch_' + '%d' % epoch, 'a')
f_stoi = open(dir_to_save + '/stoi_epoch_' + '%d' % epoch, 'a')
model.eval()
with torch.no_grad():
for inputs, labels in Bar(validation_loader):
batch_num += 1
# to cuda
inputs = inputs.float().to(DEVICE)
labels = labels.float().to(DEVICE)
mask_real, mask_imag, real_spec, img_spec, outputs = model(inputs)
loss = model.loss(outputs, labels, real_spec, img_spec)
# loss = model.pmsqe_loss(labels, outputs)
# estimate the output speech with pesq and stoi
# save pesq & stoi score at each epoch
estimated_wavs = outputs.cpu().detach().numpy()
clean_wavs = labels.cpu().detach().numpy()
pesq = cal_pesq(estimated_wavs, clean_wavs) ## 98
stoi = cal_stoi(estimated_wavs, clean_wavs)
# pesq: 0.1 better / stoi: 0.01 better
for i in range(len(pesq)):
f_pesq.write('{:.6f}\n'.format(pesq[i]))
f_stoi.write('{:.4f}\n'.format(stoi[i]))
# reshape for sum
pesq = np.reshape(pesq, (1, -1))
stoi = np.reshape(stoi, (1, -1))
avg_pesq += sum(pesq[0]) / len(inputs)
avg_stoi += sum(stoi[0]) / len(inputs)
if epoch % 10 == 0:
# all batch data array
all_batch_input.extend(inputs)
all_batch_label.extend(labels)
all_batch_output.extend(outputs)
all_batch_real_spec.extend(mask_real)
all_batch_img_spec.extend(mask_imag)
all_batch_pesq.extend(pesq[0])
validation_loss += loss
# save the samples to tensorboard
if epoch % 10 == 0:
all_batch_pesq = np.reshape(all_batch_pesq, (-1, 1))
# find the best & worst pesq model
max_pesq_index = max_index(all_batch_pesq)
min_pesq_index = min_index(all_batch_pesq)
# find the avg pesq model
avg_pesq_index = near_avg_index(all_batch_pesq)
# save the samples to tensorboard
# the best pesq
writer.save_samples_we_want('max_pesq', all_batch_input[max_pesq_index], all_batch_label[max_pesq_index],
all_batch_output[max_pesq_index], epoch)
# the worst pesq
writer.save_samples_we_want('min_pesq', all_batch_input[min_pesq_index], all_batch_label[min_pesq_index],
all_batch_output[min_pesq_index], epoch)
# the avg pesq
writer.save_samples_we_want('avg_pesq', all_batch_input[avg_pesq_index], all_batch_label[avg_pesq_index],
all_batch_output[avg_pesq_index], epoch)
# save the same sample
clip_num = 10
writer.save_samples_we_want('n{}_sample'.format(clip_num), all_batch_input[clip_num], all_batch_label[clip_num],
all_batch_output[clip_num], epoch)
validation_loss /= batch_num
avg_pesq /= batch_num
avg_stoi /= batch_num
# save average score
f_pesq.write('Avg: {:.6f}\n'.format(avg_pesq))
f_stoi.write('Avg: {:.4f}\n'.format(avg_stoi))
f_pesq.close()
f_stoi.close()
return validation_loss, avg_pesq, avg_stoi
def model_test(model, test_loader, dir_to_save, DEVICE):
model.eval()
with torch.no_grad():
# initialization
batch_num = 0
test_loss = 0
avg_pesq = 0
avg_stoi = 0
all_batch_input = []
all_batch_label = []
all_batch_output = []
all_batch_real_spec = []
all_batch_img_spec = []
all_batch_pesq = []
# f_pesq = open(dir_to_save + '/test_pesq_epoch{}_{}_{}dB'
# .format(min_index + 1, noise_type, snr), 'a')
# f_stoi = open(dir_to_save + '/test_stoi_epoch{}_{}_{}dB'
# .format(min_index + 1, noise_type, snr), 'a')
for inputs, labels in Bar(test_loader):
batch_num += 1
# to cuda
inputs = inputs.float().to(DEVICE)
labels = labels.float().to(DEVICE)
mask_real, mask_imag, real_spec, img_spec, outputs = model(inputs)
loss = model.loss(outputs, labels, real_spec, img_spec)
print(type(outputs))
# loss = model.pmsqe_loss(labels, outputs)
# estimate the output speech with pesq and stoi
# save pesq & stoi score at each epoch
# [18480, 1]
estimated_wavs = outputs.cpu().detach().numpy()
clean_wavs = labels.cpu().detach().numpy()
pesq = cal_pesq(estimated_wavs, clean_wavs)
stoi = cal_stoi(estimated_wavs, clean_wavs)
# # pesq: 0.1 better / stoi: 0.01 better
# for i in range(len(pesq)):
# f_pesq.write('{:.6f}\n'.format(pesq[i]))
# f_stoi.write('{:.4f}\n'.format(stoi[i]))
test_loss += loss
# reshape for sum
pesq = np.reshape(pesq, (1, -1))
stoi = np.reshape(stoi, (1, -1))
avg_pesq += sum(pesq[0]) / len(inputs)
avg_stoi += sum(stoi[0]) / len(inputs)
# all batch data array
all_batch_input.extend(inputs)
all_batch_label.extend(labels)
all_batch_output.extend(outputs)
all_batch_real_spec.extend(mask_real)
all_batch_img_spec.extend(mask_imag)
all_batch_pesq.extend(pesq[0])
# find the best & worst pesq model
max_pesq_index = all_batch_pesq.index(max(all_batch_pesq))
min_pesq_index = all_batch_pesq.index(min(all_batch_pesq))
test_loss /= batch_num
avg_pesq /= batch_num
avg_stoi /= batch_num
max_pesq = all_batch_pesq[max_pesq_index]
min_pesq = all_batch_pesq[min_pesq_index]
# save average score
# f_pesq.write('Max: {:.6f} | Min: {:.6f} | Avg: {:.6f}\n'.format(max_pesq, min_pesq, avg_pesq))
# f_stoi.write('Avg: {:.4f}\n'.format(avg_stoi))
# f_pesq.close()
# f_stoi.close()
return test_loss, avg_pesq, avg_stoi
def DivideInput(inputs):
length = 48000
N = inputs.shape[2] // length
r = inputs.shape[2] % length
# print('Divide input : ', inputs.shape, N)
new_inputs = [inputs[:, :, i * length:(i + 1) * length] for i in range(N)] +\
([] if r == 0 else \
[torch.cat([inputs[:, :, N * length:], torch.zeros((1, 1, length - r), dtype=inputs.dtype,\
device=inputs.device)], dim=-1)])
indexes = [range(length) for i in range(N)] + \
([] if r == 0 else [range(r)])
return new_inputs, indexes
def GetWave(model, inputs):
inputs, indexes = DivideInput(inputs)
wave = []
for index, inp in zip(indexes, inputs):
_, _, _, _, outputs = model(inp)
wave.append(outputs[:, index])
# print('indexes : ', len(indexes))
wave = torch.cat(wave, dim=-1)
return wave
def model_eval(model, test_loader, DEVICE):
model.eval()
with torch.no_grad():
for inputs, labels, file_name in Bar(test_loader):
file_name = file_name[0]
# print(file_name)
# to cuda
inputs = inputs.float().to(DEVICE)
labels = labels.float().to(DEVICE)
wave = GetWave(model, inputs).cpu().numpy()[0]
# print(type(wave), wave.shape, labels.shape)
# print(type(wave), wave.shape, wave.dtype)
denoised_path = os.path.join('denoised', file_name)
sf.write(denoised_path, wave, 16000)
return 0, 0, 0