-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhiv_report.Rmd
99 lines (63 loc) · 1.58 KB
/
hiv_report.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
title: "VRC01 Neutralization Report"
author: "David Benkeser"
date: "`r Sys.Date()`"
output: html_document
---
```{r, read-config, include = FALSE}
which_config <- Sys.getenv("which_config")
config_list <- config::get(
config = which_config
)
```
```{r, set-chunk-opts, echo = FALSE, eval = config_list$production}
library(knitr)
opts_chunk$set(
echo = FALSE, warning = FALSE, message = FALSE
)
```
```{r, load-data}
here::i_am("hiv_report.Rmd")
data <- readRDS(
file = here::here("output/data_clean.rds")
)
```
# Descriptive Analysis
## Tabular analysis
Some characteristics of the `r nrow(data)` viruses from the CATNAP database are displayed
in the table below.
```{r, table1}
table_one <- readRDS(
file = here::here("output/table_one.rds")
)
table_one
```
## Graphical analysis
Below we report a scatter plot of antibody resistance as a function of
number of PNGs in the glycan shield.
```{r, plot-data}
#| fig.align = "center",
#| out.width = "600px"
knitr::include_graphics(
here::here("output/scatterplot.png")
)
```
# Regression Analysis
## Primary model
```{r, fit-primary-model}
both_regression_tables_filename <- paste0(
"both_regression_tables_config_",
which_config,
".rds"
)
both_regression_tables <- readRDS(
file = here::here("output", both_regression_tables_filename)
)
both_regression_tables$primary
```
## Secondary model
In this analysis, we generated a binary outcome where level 1 of the outcome
means the antibody resistance score was greater than `r config_list$cutpoint`.
```{r, secondary-model}
both_regression_tables$secondary
```