-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathautomodel.py
137 lines (120 loc) · 5.77 KB
/
automodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import pandas as pd
import numpy
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import log_loss, roc_auc_score
from deepctr.models import DeepFM
from deepctr import SingleFeat
import tensorflow as tf
from keras.callbacks import EarlyStopping
def model_pool(defaultfilename='./input/final_track2_train.txt', defaulttestfile='./input/final_track2_test_no_anwser.txt',
defaultcolumnname=['uid', 'user_city', 'item_id', 'author_id', 'item_city', 'channel', 'finish', 'like', 'music_id', 'did', 'creat_time', 'video_duration'],
defaulttarget=['finish', 'like'], defaultmodel="AFM", PERCENT=1):
data = pd.read_csv(defaultfilename, sep='\t', names=defaultcolumnname, iterator=True)
#1 train file
take=[]
loop = True
while loop:
try:
chunk=data.get_chunk(10000)
chunk=chunk.take(list(range(min(chunk.shape[0], PERCENT*100))), axis=0)
take.append(chunk)
except StopIteration:
loop=False
print('stop iteration')
data = pd.concat(take, ignore_index=True)
train_size = data.shape[0]
print(train_size)
#2 extract file
test_data = pd.read_csv(defaulttestfile, sep='\t', names=defaultcolumnname, )
data = data.append(test_data)
test_size=test_data.shape[0]
print(test_size)
sparse_features=[]
dense_features=[]
target=defaulttarget
for column in data.columns:
if column in defaulttarget:
continue
if data[column].dtype in [numpy.float_ , numpy.float64]:
dense_features.append(column)
if data[column].dtype in [numpy.int_, numpy.int64]:
sparse_features.append(column)
#3. Remove na values
data[sparse_features] = data[sparse_features].fillna('-1', )
data[dense_features] = data[dense_features].fillna(0,)
#4. Label Encoding for sparse features, and do simple Transformation for dense features
for feat in sparse_features:
lbe = LabelEncoder()
data[feat] = lbe.fit_transform(data[feat])
#5. Dense normalize
if dense_features:
mms = MinMaxScaler(feature_range=(0, 1))
data[dense_features] = mms.fit_transform(data[dense_features])
#6. generate input data for model
sparse_feature_list = [SingleFeat(feat, data[feat].nunique())
for feat in sparse_features]
dense_feature_list = [SingleFeat(feat, 0)
for feat in dense_features]
#7. generate input data for model
train = data.iloc[:train_size]
test = data.iloc[train_size:]
#8.generate data
print(train.columns)
train_model_input = [train[feat.name].values for feat in sparse_feature_list] + \
[train[feat.name].values for feat in dense_feature_list]
test_model_input = [test[feat.name].values for feat in sparse_feature_list] + \
[test[feat.name].values for feat in dense_feature_list]
train_labels = [train[target].values for target in defaulttarget]
test_labels = test[target]
# 6.choose a model
import pkgutil
import mdeepctr.models
# modelnames = [name for _, name, _ in pkgutil.iter_modules(mdeepctr.__path__)]
# modelname = input("choose a model: "+",".join(modelnames)+"\n")
# if not modelname:
modelname=defaultmodel
# 7.build a model
model = getattr(mdeepctr.models, modelname)({"sparse": sparse_feature_list,
"dense": dense_feature_list}, final_activation='sigmoid', output_dim=len(defaulttarget))
# 8. eval predict
def auc(y_true, y_pred):
return tf.py_func(roc_auc_score, (y_true, y_pred), tf.double)
# model.compile("adagrad", loss="binary_crossentropy", metrics=[auc])
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=[auc])
my_callbacks = [EarlyStopping(monitor='loss', min_delta=1e-2, patience=3, verbose=1, mode='min')]
history = model.fit(train_model_input, train_labels,
batch_size=4096, epochs=100, verbose=1, callbacks=my_callbacks)
pred_ans = model.predict(test_model_input, batch_size=2**14)
# nsamples, nx, ny = numpy.asarray(pred_ans).shape
# pred_ans = numpy.asarray(pred_ans).reshape((nx*ny, nsamples))
# print(test_labels.shape)
# print(pred_ans.shape)
#
# logloss = round(log_loss(test_labels, pred_ans), 4)
# try:
# roc_auc = round(roc_auc_score(test_labels, pred_ans), 4)
# except:
# roc_auc=0
result = test_data[['uid', 'item_id', 'finish', 'like']].copy()
result.rename(columns={'finish': 'finish_probability',
'like': 'like_probability'}, inplace=True)
result['finish_probability'] = pred_ans[0]
result['like_probability'] = pred_ans[1]
output = "%s-result.csv" % (modelname)
result[['uid', 'item_id', 'finish_probability', 'like_probability']].to_csv(
output, index=None, float_format='%.6f')
return history
if __name__ == "__main__":
import pkgutil
import mdeepctr.models
modelnames = [name for _, name, _ in pkgutil.iter_modules(mdeepctr.models.__path__)]
functions = ["AFM", "DCN", "MLR", "DeepFM",
"NFM", "DIN", "FNN", "PNN", "WDL", "xDeepFM", "AutoInt", ]
models_dic = dict((function.lower(),function) for function in functions)
for modelname in modelnames:
print(models_dic[modelname])
if models_dic[modelname] in ["AFM","AutoInt", "DCN","NFM","PNN", "DIN","WDL","MLR","DeepFM","xDeepFM"]:
continue
history = model_pool(defaultmodel=models_dic[modelname])
print(history.history)