-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlda.py
213 lines (164 loc) · 6.22 KB
/
mlda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# -*- coding: utf-8 -*-
import numpy as np
import random
import math
import pylab
import pickle
import os
# ハイパーパラメータ
__alpha = 1.0
__beta = 1.0
epoch_num = 100 # 学習エポック
def plot( n_dz, liks, D, K ):
print ("対数尤度", liks[-1])
doc_dopics = np.argmax( n_dz , 1 )
print ("分類結果", doc_dopics)
print ("---------------------")
# グラフ表示
pylab.clf()
pylab.subplot("121")
pylab.title( "P(z|d)" )
pylab.imshow( n_dz / np.tile(np.sum(n_dz,1).reshape(D,1),(1,K)) , interpolation="none" )
pylab.subplot("122")
pylab.title( "liklihood" )
pylab.plot( range(len(liks)) , liks )
pylab.draw()
pylab.pause(0.1)
def calc_lda_param( docs_mdn, topics_mdn, K, dims ):
M = len(docs_mdn)
D = len(docs_mdn[0])
# 各物体dにおいてトピックzが発生した回数
n_dz = np.zeros((D,K))
# 各トピックzにおいて特徴wが発生した回数
n_mzw = [ np.zeros((K,dims[m])) for m in range(M)]
# 各トピックが発生した回数
n_mz = [ np.zeros(K) for m in range(M) ]
# 数え上げ処理
for d in range(D):
for m in range(M):
if dims[m]==0:
continue
N = len(docs_mdn[m][d]) # 物体に含まれる特徴数
for n in range(N):
w = docs_mdn[m][d][n] # 物体dのn番目の特徴インデックス
z = topics_mdn[m][d][n] # 特徴に割り当てられているトピック
n_dz[d][z] += 1
n_mzw[m][z][w] += 1
n_mz[m][z] += 1
return n_dz, n_mzw, n_mz
def sample_topic( d, w, n_dz, n_zw, n_z, K, V ):
P = [ 0.0 ] * K
# 累積確率を計算
P = (n_dz[d,:] + __alpha )*(n_zw[:,w] + __beta) / (n_z[:] + V *__beta)
for z in range(1,K):
P[z] = P[z] + P[z-1]
# サンプリング
rnd = P[K-1] * random.random()
for z in range(K):
if P[z] >= rnd:
return z
# 単語を一列に並べたリスト変換
def conv_to_word_list( data ):
V = len(data)
doc = []
for v in range(V): # v:語彙のインデックス
for n in range(data[v]): # 語彙の発生した回数分for文を回す
doc.append(v)
return doc
# 尤度計算関数
def calc_liklihood( data, n_dz, n_zw, n_z, K, V ):
lik = 0
P_wz = (n_zw.T + __beta) / (n_z + V *__beta)
for d in range(len(data)):
Pz = (n_dz[d] + __alpha )/( np.sum(n_dz[d]) + K *__alpha )
Pwz = Pz * P_wz
Pw = np.sum( Pwz , 1 ) + 0.000001
lik += np.sum( data[d] * np.log(Pw) )
return lik
def save_model( save_dir, n_dz, n_mzw, n_mz, M, dims ):
try:
os.mkdir( save_dir )
except:
pass
Pdz = n_dz + __alpha
Pdz = (Pdz.T / Pdz.sum(1)).T
np.savetxt( os.path.join( save_dir, "Pdz.txt" ), Pdz, fmt=str("%f") )
for m in range(M):
Pwz = (n_mzw[m].T + __beta) / (n_mz[m] + dims[m] *__beta)
Pdw = Pdz.dot(Pwz.T)
np.savetxt( os.path.join( save_dir, "Pmdw[%d].txt" % m ) , Pdw )
with open( os.path.join( save_dir, "model.pickle" ), "wb" ) as f:
pickle.dump( [n_mzw, n_mz], f )
def load_model( load_dir ):
model_path = os.path.join( load_dir, "model.pickle" )
with open(model_path, "rb" ) as f:
a,b = pickle.load( f )
return a,b
# MLDAのメイン処理
def mlda( data, K, num_itr=epoch_num, save_dir="model", load_dir=None ):
pylab.ion()
# 尤度のリスト
liks = []
M = len(data) # モダリティの数
dims = []
for m in range(M):
if data[m] is not None:
dims.append( len(data[m][0]) )
D = len(data[m]) # 物体の数
else:
dims.append( 0 )
# data内の単語を一列に並べる(計算しやすくするため)
docs_mdn = [[ None for i in range(D) ] for m in range(M)]
topics_mdn = [[ None for i in range(D) ] for m in range(M)]
for d in range(D):
for m in range(M):
if data[m] is not None:
docs_mdn[m][d] = conv_to_word_list( data[m][d] )
topics_mdn[m][d] = np.random.randint( 0, K, len(docs_mdn[m][d]) ) # 各単語にランダムでトピックを割り当てる
# LDAのパラメータを計算
n_dz, n_mzw, n_mz = calc_lda_param( docs_mdn, topics_mdn, K, dims )
# 認識モードでは学習したパラメータを読み込む
if load_dir:
n_mzw, n_mz = load_model( load_dir )
for it in range(num_itr):
# メイン処理
for d in range(D):
for m in range(M):
if data[m] is None:
continue
N = len(docs_mdn[m][d]) # 物体dのモダリティmに含まれる特徴数
for n in range(N):
w = docs_mdn[m][d][n] # 特徴のインデックス
z = topics_mdn[m][d][n] # 特徴に割り当てられているカテゴリ
# データを取り除きパラメータの更新
n_dz[d][z] -= 1
if not load_dir:
n_mzw[m][z][w] -= 1
n_mz[m][z] -= 1
# サンプリング
z = sample_topic( d, w, n_dz, n_mzw[m], n_mz[m], K, dims[m] )
# データをサンプリングされたクラスに追加してパラメータを更新
topics_mdn[m][d][n] = z
n_dz[d][z] += 1
if not load_dir:
n_mzw[m][z][w] += 1
n_mz[m][z] += 1
lik = 0
for m in range(M):
if data[m] is not None:
lik += calc_liklihood( data[m], n_dz, n_mzw[m], n_mz[m], K, dims[m] )
liks.append( lik )
plot( n_dz, liks, D, K )
save_model( save_dir, n_dz, n_mzw, n_mz, M, dims )
pylab.ioff()
pylab.show()
def main():
topic = 3
data = []
data.append( np.loadtxt( "./bof/histogram_v.txt" , dtype=np.int32) )
data.append( np.loadtxt( "./bow/histogram_w.txt" , dtype=np.int32)*5 )
mlda( data, topic, 100, "learn_result" )
data[1] = None
mlda( data, topic, 10, "recog_result" , "learn_result" )
if __name__ == '__main__':
main()