-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqvp.f90
352 lines (336 loc) · 10.8 KB
/
qvp.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
subroutine qvp(zdr,ranger,itimes,elev_deg,numzdrgates,nazm_zdrs,h_radar,xlat,xlon, &
year,mon,day,time,depth)
!
! basic subroutine to calculate quasi-vertical profile (QVP) of ZDR observations
! from a time series of a single multiple elevation angle scan. The QVP is used
! to estimate convective boundary layer (CBL) depth. The best elevation angle
! to use is ~4.5 degrees.
!
! Based upon the following:
!
! Original Matthew Kumjian MATLAB code
! 16-18 October 2012; Boulder CO
!
! Modified for use with QVPs (Kumjian and Lombardo 2017, MWR) in Feb 2015,
! State College, PA -- mk
!
! Code to identify CBL top from John Banghoff, MS thesis, Penn State 2019
!
! Smoothing and sunrise/sunset added by David Stensrud, 2019-2020
!
! Commented for use in EMC -- 7/6/2020 - mk, ds. Converted to Fortran90 9/2020 ds
!
! It is assumed that the ZDR observations provided begin no later than 0900 UTC and extend
! through at least a few hours after sunrise in order to capture the daytime CBL rise.
! Program could be run every hour to update the time series throughout the daytime.
! No need to run the program at night.
!
! Input:
! zdr ZDR values in 2d array (times, azimuth, radial)
! ranger radial range distances from radar (m) in 1d array (radial)
! itimes number of radar scans provided (should be sequential in time)
! elev_deg radar elevation angle of ZDR observations in 1d array (itimes)
! numzdrgates number of observations along radial in sweep in 1d array (itimes)
! nazm_zdrs number of azimuth angles in sweep in 1d array (itimes)
! h_radar radar height above the ground (m)
! xlat latitude of radar location
! xlon longitude of radar location
! year year of radar observation
! mon month of radar observation
! day day of radar observation
! time utc time of radar observation in 1d array (itimes)
! format is hour.fraction of hour. So a value of 6.5 = 6:30
!
! Output:
!
! Assumed that there are no more than 720 times (elevation scans) in the observations for a given day.
! and that there are no more than 2000 gates along a radial.
!
! depth array of CBL depths (m) in 1d array (itimes)
!
real :: zdr(itimes,nazm_zdr_max,numzdrgate_max)
real :: elev_deg(itimes)
real :: numzdrgates(itimes)
real :: nazm_zdrs(itimes)
real :: time(itimes)
real :: depth(itimes)
real :: ranger(numzdrgate_max)
real :: height(720,2000)
real :: qvp_zdr(720,2000)
real :: slice(7)
integer :: mond(12)
!
! define constants
!
! a earth equatorial radius in m
! b earth polar radius in m
! ke constant for 4/3 equivalent earth radius assumption
! pi 3.1415...
! mond days in each month of the year, non-leap year months
! solar solar constant (W m-2)
! dtr conversion factor degrees to radians
!
ke = 4.0 / 3.0
a = 6378137.
b = 6356752.3
pi = 4.0*atan(1.0)
mond = (/31,28,31,30,31,30,31,31,30,31,30,31/)
solar=1368.
dtr=pi/180.
!
! loop over all data times
!
do it=1,itimes
!
! calculate height of radar beam above ground for all ranges
! for this particular scan
!
elrad = pi*elev_deg(it)/180.
iend=numzdrgates(it)
do i=1,iend
height(it,i)=sqrt(ranger(i)*ranger(i) + (ke*a)*(ke*a) + 2.*ranger(i)*ke*a*sin(elrad)) &
-ke*a + h_radar
enddo
!
! calculate mean zdr for each range gate (average over all azimuth angles)
! no quality control is done here - assumed that the data are qc'ed before
! passing to subroutine
!
iend=numzdrgates(it)
kend=nazm_zdrs(it)
do i=1,iend
do k=1,kend
qvp_zdr(it,i) = qvp_zdr(it,i)+zdr(it,k,i)
enddo
qvp_zdr(it,i)=qvp_zdr(it,i)/nazm_zdrs(it)
enddo
!
! end itimes loop - have created a time-height profile of mean zdr from all available observation
! times.
!
enddo
!
! We have created the time-height array of ZDR values that constitute the QVP. Now we smooth
! the array to remove some of the noise. The smoother is a 15-point version that worked well for
! a variety of test cases, but is imperfect as it updates the array as the smoothing is ongoing.
! This is done to save memory but could be updated as needed. Not sure it makes much difference
! to the result.
!
! Assumption: number of range gates is the same for all scans
! if not true, then find minimum number of range gates for all scans and use it in
! the loop below.
!
lend=itimes-2
mend=numzdrgates(1)-2
do l=3,lend
do m = 3,mend
part0 = qvp_zdr(l-2,m-1)+qvp_zdr(l-2,m)+qvp_zdr(l-2,m+1);
part1 = qvp_zdr(l-1,m-1)+qvp_zdr(l-1,m)+qvp_zdr(l-1,m+1);
part2 = qvp_zdr(l,m-1)+qvp_zdr(l,m)+qvp_zdr(l,m+1);
part3 = qvp_zdr(l+1,m-1)+qvp_zdr(l+1,m)+qvp_zdr(l+1,m+1);
part4 = qvp_zdr(l+2,m-1)+qvp_zdr(l+2,m)+qvp_zdr(l+2,m+1);
qvp_zdr(l,m) = (1./15.)*(part0+part1+part2+part3+part4);
enddo
enddo
!
! Next step is to calculate the CBL depth as a function of time, which is indicated by the minimum value
! of ZDR in the column at each observation time. One then connects the height of the ZDR minimum values
! for each observation time to create the CBL height as a function of time.
!
! To improve algorithm efficiency and accuracy, it is important to know the latitude, longitude, and UTC
! time of the observations. This allows one to determine is the observation is after sunrise and before
! sunset.
!
! Input: year (4 digit integer)
! month (2 digit integer)
! day (2 digit integer)
!
! Check for leap year
!
wtest = year/4.
ytest = nint(wtest)
ztest=abs(wtest-ytest)
leap=0
if(ztest < 0.25) then
leap=1
end if
!
julian=0
if (mon >= 2) then
do k=1,mon-1
julian=julian+mond(k)
enddo
end if
if (mon > 2) then
julian=julian+leap
end if
!
! now add the day of the month to the total
!
julian=julian+day
!
! Determine UTC time of sunrise and sunset. Start looping over times
! before sunrise, so use 5 UTC. Change as needed. Time of sunset may be
! after 24 UTC in the warm season.
! variable stime is time of sunset in hours (so 6.5 would be 6:30 am)
sunrise=-10.
sunset=10.
delta=23.45*cos( (2.*pi*(1.*julian-173.)) / 365.25)
do k=1,288
xh=( ( 5. + (k-1)*5./60. - 12.0)*pi )/12. + xlon*pi/180.
stime = 5.+(k-1)*5./60.
rnside=sin(xlat*dtr)*sin(delta*dtr)+cos(xlat*dtr)*cos(delta*dtr)*cos(xh)
qs=solar*rnside
if (qs > 0.0 .and. sunrise < 0.0) then
sunrise=stime
sunset=-10.
end if
if (qs < 0.0 .and. sunset < 0.0) then
sunset=stime
end if
enddo
!
! verify that sunrise and sunset are working
!
print *,' Sunrise and Sunset in UTC for this radar are: '
print *,sunrise,' ',sunset
! Estimate CBL depth by searching for the minimum value in ZDR in
! vertical profile, but constrained to be near the ground at sunrise
! and moving upward or constant as time increases with a maximum
! vertical change in CBL height determined by time interval between
! radar scans. The array "results" holds the CBL depth profile as function
! of time.
kstart=10
depth(1) = kstart
depth(2) = kstart
!
! loop over observation times
! note that lchg is the max change in height allowed from one observation time
! to the next observation time, in array index values. lchg is larger
! after sunrise than during night
!
kend=itimes-1
do k=3,kend
!
! after sunrise then
!
if (time(k) >= sunrise) then
lchg = nint(200*(time(k)-time(k-1)))
!
! define start (ist) and end (ien) indices for finding minimum value
!
ist=depth(k-1)-lchg
if (ist < 1) then
ist = 1
end if
ien=results(k-1)+lchg
zdrmax=10.
depth(k) = depth(k-1)
do l=ist,ien
if (qvp_zdr(k,l) < zdrmax) then
zdrmax = qvp_zdr(k,l)
depth(k) = l
end if
enddo
!
! before sunrise then
!
else
depth(k)=kstart
end if
if (depth(k) < kstart) then
depth(k) = kstart
end if
enddo
!
! smooth CBL height evolution
! optional smoothing of the CBL height over time
!
iend=itimes-5
do i = 5,iend
slice(1)=depth(i-3)
slice(2)=depth(i-2)
slice(3)=depth(i-1)
slice(4)=depth(i)
slice(5)=depth(i+1)
slice(6)=depth(i+2)
slice(7)=depth(i+3)
call mdian(slice,7,xmed)
depth(i)=xmed
enddo
end subroutine qvp
!***************************************************************
!* Calculate the median value of an array with the Heapsort *
!* method *
!* ----------------------------------------------------------- *
!* REFERENCE: *
!* "NUMERICAL RECIPES By W.H. Press, B.P. Flannery, *
!* S.A. Teukolsky and W.T. Vetterling, Cambridge *
!* University Press, 1986" [BIBLI 08]. *
!*******************************************************
!* Given an array X of N numbers, returns their median *
!* value XMED. The array X is modified and returned *
!* sorted in ascending order. *
!*******************************************************
SUBROUTINE MDIAN(X,N,XMED)
real X(N)
call hpsort(N,X)
N2=N/2
if (2*N2.eq.N) then
XMED = 0.5*(X(N2)+X(N2+1))
else
XMED = X(N2+1)
endif
return
END
!*****************************************************
!* Sorts an array RA of length N in ascending order *
!* by the Heapsort method *
!* ------------------------------------------------- *
!* INPUTS: *
!* N size of table RA *
!* RA table to be sorted *
!* OUTPUT: *
!* RA table sorted in ascending order *
!* *
!* NOTE: The Heapsort method is a N Log2 N routine, *
!* and can be used for very large arrays. *
!*****************************************************
SUBROUTINE HPSORT(N,RA)
real RA(N)
L=N/2+1
IR=N
!The index L will be decremented from its initial value during the
!"hiring" (heap creation) phase. Once it reaches 1, the index IR
!will be decremented from its initial value down to 1 during the
!"retirement-and-promotion" (heap selection) phase.
10 continue
if(L > 1)then
L=L-1
RRA=RA(L)
else
RRA=RA(IR)
RA(IR)=RA(1)
IR=IR-1
if(IR.eq.1)then
RA(1)=RRA
return
end if
end if
I=L
J=L+L
20 if(J.le.IR)then
if(J < IR)then
if(RA(J) < RA(J+1)) J=J+1
end if
if(RRA < RA(J))then
RA(I)=RA(J)
I=J; J=J+J
else
J=IR+1
end if
goto 20
end if
RA(I)=RRA
goto 10
END