forked from VIROBO-15/UDBNET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetwork.py
253 lines (209 loc) · 8.89 KB
/
Network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import torch.nn as nn
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
class UNetDown(nn.Module):
def __init__(self, in_size, out_size, normalize=True, dropout=0.0):
super(UNetDown, self).__init__()
layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)]
if normalize:
layers.append(nn.InstanceNorm2d(out_size))
layers.append(nn.LeakyReLU(0.2,inplace=True))
if dropout:
layers.append(nn.Dropout(dropout))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class UNetUp(nn.Module):
def __init__(self, in_size, out_size, dropout=0.0):
super(UNetUp, self).__init__()
layers = [
nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False),
nn.InstanceNorm2d(out_size),
nn.ReLU(inplace=True),
]
if dropout:
layers.append(nn.Dropout(dropout))
self.model = nn.Sequential(*layers)
def forward(self, x, skip_input):
x = self.model(x)
x = torch.cat((x, skip_input), 1)
return x
class style_encoder(nn.Module):
def __init__(self, in_channels=3):
super(style_encoder, self).__init__()
self.down1 = UNetDown(3, 32, normalize=False)
self.down2 = UNetDown(32, 64)
self.down3 = UNetDown(64, 128)
self.down4 = UNetDown(128, 256, dropout=0.5)
self.down5 = UNetDown(256, 256, dropout=0.5)
self.down6 = UNetDown(256, 256, dropout=0.5)
self.down7 = UNetDown(256, 256, dropout=0.5)
self.down8 = UNetDown(256, 256, normalize=False, dropout=0.5)
def forward(self, x):
# U-Net generator with skip connections from encoder to decoder
d1 = self.down1(x)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
d5 = self.down5(d4)
d6 = self.down6(d5)
d7 = self.down7(d6)
d8 = self.down8(d7)
return d8
class Texture_Generator_and_context_encoder(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(Texture_Generator_and_context_encoder, self).__init__()
self.style_encoder = style_encoder(in_channels=3)
self.down1 = UNetDown(in_channels, 32, normalize=False)
self.down2 = UNetDown(32, 64)
self.down3 = UNetDown(64, 128)
self.down4 = UNetDown(128, 256,dropout=0.5)
self.down5 = UNetDown(256, 256, dropout=0.5)
self.down6 = UNetDown(256, 256, dropout=0.5)
self.down7 = UNetDown(256, 256, dropout=0.5)
self.down8 = UNetDown(256, 256, normalize=False, dropout=0.5)
self.up1 = UNetUp(512, 512, dropout=0.5)#512+256 is the dimension of the input
self.up2 = UNetUp(768, 512, dropout=0.5)
self.up3 = UNetUp(768, 512, dropout=0.5)
self.up4 = UNetUp(768, 512, dropout=0.5)
self.up5 = UNetUp(768, 128)
self.up6 = UNetUp(256, 64)
self.up7 = UNetUp(128, 32)
self.final = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.ZeroPad2d((1, 0, 1, 0)),
nn.Conv2d(64, out_channels, 4, padding=1),
nn.Tanh(),
)
def forward(self, clean, noisy):
# U-Net generator with skip connections from encoder to decoder
style8 = self.style_encoder.forward(noisy)
d1 = self.down1(clean)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
d5 = self.down5(d4)
d6 = self.down6(d5)
d7 = self.down7(d6)
d8 = self.down8(d7)
con = torch.cat((d8, style8),dim=1)
u1 = self.up1(con, d7)
u2 = self.up2(u1, d6)
u3 = self.up3(u2, d5)
u4 = self.up4(u3, d4)
u5 = self.up5(u4, d3)
u6 = self.up6(u5, d2)
u7 = self.up7(u6, d1)
return self.final(u7)
class Texture_Discriminator(nn.Module):
def __init__(self, in_channels=3):
super(Texture_Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, normalization=True):
"""Returns downsampling layers of each discriminator block"""
layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)]
if normalization:
layers.append(nn.InstanceNorm2d(out_filters))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*discriminator_block(in_channels , 32, normalization=False),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
*discriminator_block(128,256),
nn.ZeroPad2d((1, 0, 1, 0)),
nn.Conv2d(256, 1, 4, padding=1, bias=False)
)
def forward(self, img_A):#////////////////////make the changes
#img_input = torch.cat((img_A, img_B), 1)
return self.model(img_A)
class Binarization_Generator(nn.Module):
def __init__(self, in_channels=3, out_channels=3):
super(Binarization_Generator, self).__init__()
self.down1 = UNetDown(in_channels, 64, normalize=False)
self.down2 = UNetDown(64, 128)
self.down3 = UNetDown(128, 256)
self.down4 = UNetDown(256, 512, dropout=0.5)
self.down5 = UNetDown(512, 512, dropout=0.5)
self.down6 = UNetDown(512, 512, dropout=0.5)
self.down7 = UNetDown(512, 512, dropout=0.5)
self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5)
self.up1 = UNetUp(512, 512, dropout=0.5)
self.up2 = UNetUp(1024, 512, dropout=0.5)
self.up3 = UNetUp(1024, 512, dropout=0.5)
self.up4 = UNetUp(1024, 512, dropout=0.5)
self.up5 = UNetUp(1024, 256)
self.up6 = UNetUp(512, 128)
self.up7 = UNetUp(256, 64)
self.final = nn.Sequential(
nn.Upsample(scale_factor=2),
nn.ZeroPad2d((1, 0, 1, 0)),
nn.Conv2d(128, 3, 4, padding=1),
nn.Tanh(),
)
def forward(self, x):
d1 = self.down1(x)
d2 = self.down2(d1)
d3 = self.down3(d2)
d4 = self.down4(d3)
d5 = self.down5(d4)
d6 = self.down6(d5)
d7 = self.down7(d6)
d8 = self.down8(d7)
u1 = self.up1(d8, d7)
u2 = self.up2(u1, d6)
u3 = self.up3(u2, d5)
u4 = self.up4(u3, d4)
u5 = self.up5(u4, d3)
u6 = self.up6(u5, d2)
u7 = self.up7(u6, d1)
return self.final(u7)
class Binarization_Discriminator(nn.Module):
def __init__(self, in_channels=3):
super(Binarization_Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, normalization=True):
"""Returns downsampling layers of each discriminator block"""
layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)]
if normalization:
layers.append(nn.InstanceNorm2d(out_filters))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*discriminator_block(in_channels , 32, normalization=False),
*discriminator_block(32,64),
*discriminator_block(64,128),
*discriminator_block(128,256),
nn.ZeroPad2d((1, 0, 1, 0)),
nn.Conv2d(256, 1, 4, padding=1, bias=False)
)
def forward(self, img_A):#Here we have made the changes///////////////////////////////////////////////
# Concatenate image and condition image by channels to produce input
#img_input = torch.cat((img_A, img_B), 1)
return self.model(img_A)
class Joint_Discriminator(nn.Module):
def __init__(self, in_channels=3):
super(Joint_Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, normalization=True):
"""Returns downsampling layers of each discriminator block"""
layers = [nn.Conv2d(in_filters, out_filters, 4, stride=2, padding=1)]
if normalization:
layers.append(nn.InstanceNorm2d(out_filters))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*discriminator_block(in_channels*2 , 32, normalization=False),
*discriminator_block(32,64),
*discriminator_block(64,128),
*discriminator_block(128,256),
nn.ZeroPad2d((1, 0, 1, 0)),
nn.Conv2d(256, 1, 4, padding=1, bias=False)
)
def forward(self, img_A, img_B):#Here we have made the changes///////////////////////////////////////////////
# Concatenate image and condition image by channels to produce input
img_input = torch.cat((img_A, img_B), 1)
return self.model(img_input)