-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathenv.py
358 lines (298 loc) · 13 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
from datetime import datetime
import time as time
import math
import json as json
import numpy as np
import gymnasium as gym
from gymnasium import spaces
import tensorflow as tf
from kubernetes import client, config
from prometheus_api_client import PrometheusConnect
# Utility to connect to K8s API, Prometheus API and OpenFaaS API
config.load_config()
deployment_name = 'matmul' # deployment name for deployed function
namespace = 'openfaas-fn' # default namespace for openfaas functions
scale_api = client.AppsV1Api()
resource_usage_api = client.CustomObjectsApi()
prom = PrometheusConnect(url='${PROMETHEUS_URL}', disable_ssl=True)
class Environment(gym.Env):
# every environment should support None render mode
metadata = {'render_modes': ['human', None]}
def __init__(self, rew_range=(-100, 10000), min_pods=1, max_pods=24) -> None:
super(Environment, self).__init__()
# FIXED PARAMETERS / Configurable
self.reward_range = rew_range
self.MAX_PODS = max_pods
self.MIN_PODS = min_pods
self.sampling_window = 30
self.timestep = 0
self.episode = 0
self.loop = 0
self._last_obs = None
self._stats_window = 100
self.reward_history = []
self.score = 0
# [avg_execution, throughput, requests, replicas, avg_cpu/req, avg_mem/req]
self.observation_space = spaces.Box(
low=np.array([0, 0, 0, self.MIN_PODS, 0, 0]),
high=np.array([60, 100, 100, self.MAX_PODS, 2, 2]),
shape=(6,),
dtype=np.float64)
# action is either increase or decrease pods
self.action_space = spaces.Discrete(5)
self._action_to_scale = {0: -2,
1: -1,
2: 0,
3: 1,
4: 2}
self._initial_setup()
def _initial_setup(self):
# function resource requests
self.func_cpu = 150 # millicores
self.func_mem = round((256/1024), 2) # in GBi
# custom metrics from env
logdir = "logs/" + datetime.now().strftime("%Y%m%d-%H%M%S")
self.file_writer = tf.summary.create_file_writer(logdir + "/${MODEL_NAME}")
self.file_writer.set_as_default()
self._reward_file = 'reward_history_${MODEL_NAME}.json'
def _get_info(self):
return {}
# Utility function to take action in the environment
def _take_action(self, action):
try:
# number of ready function replicas
current_pods = scale_api.read_namespaced_deployment(name=deployment_name,
namespace=namespace).status.ready_replicas
if current_pods == None:
current_pods = 0
print('current pods are NoneType')
except Exception as e:
current_pods = 0
print('Error in reading ready pods')
scale_value = current_pods + action
action_feedback = False
if action < 0 :
if (scale_value >= self.MIN_PODS):
action_feedback = True
body = {'spec': {'replicas': scale_value}}
try:
_ = scale_api.patch_namespaced_deployment_scale(name=deployment_name,
namespace=namespace,
body=body).spec.replicas
except Exception as e:
action_feedback = False
print(e)
else:
action_feedback = False
elif action == 0:
if scale_value == 0:
action_feedback = True
else:
action_feedback = False
else:
if (scale_value <= self.MAX_PODS and scale_value >= self.MIN_PODS):
action_feedback = True
body = {'spec': {'replicas': scale_value}}
try:
_ = scale_api.patch_namespaced_deployment_scale(name=deployment_name,
namespace=namespace,
body=body).spec.replicas
except Exception as e:
action_feedback = False
print(e)
else:
action_feedback = False
info = {'action': action,
'action_feedback': action_feedback,
'pods': current_pods,
'scale_value': scale_value}
return info
def _get_obs(self):
obs = None
# get the avg execution time
query1 = "(rate(gateway_functions_seconds_sum{function_name='matmul.openfaas-fn',\
code='200'}[30s]) / \
rate(gateway_functions_seconds_count{function_name='matmul.openfaas-fn',\
code='200'}[30s]))"
try:
data = prom.custom_query(query=query1)
avg_execution = round(float((data[0]['value'][1])), 3)
avg_execution = {True:0, False: avg_execution}[math.isnan(avg_execution)]
except Exception as e:
avg_execution = 0.0
try:
# can be obtained from gateway_service_count
query3 = "kube_deployment_status_replicas_ready{deployment='matmul'}"
data = prom.custom_query(query=query3)
replicas = int(float(data[0]['value'][1]))
except Exception as e:
replicas = 0
print(e)
try:
# total requests during the period
query4 = "increase(gateway_function_invocation_total{function_name='matmul.openfaas-fn'}[30s])"
data = prom.custom_query(query=query4)
total = 0
for d in data:
total += int(float(d['value'][1]))
requests = total
except Exception as e:
requests = 0
print(f'requests are {requests}')
try:
# throughput during the period (percentage)
query2 = "increase(gateway_function_invocation_total{code='200', function_name='" + deployment_name + "." + namespace + "'}[30s])"
data = prom.custom_query(query=query2)
throughput = int(float(data[0]['value'][1]))
throughput = int(round((throughput/requests)*100, 2))
except ZeroDivisionError:
if requests == 0:
throughput = 100
else:
throughput = 0
except Exception:
if requests == 0:
throughput = 100
else:
throughput = 0
try:
# get the avg usage metrics
resource_list = resource_usage_api.list_namespaced_custom_object("metrics.k8s.io", "v1beta1", "openfaas-fn", "pods")
my_pods = [pod['containers'][0]['usage'] for pod in resource_list['items'] if pod['metadata']['labels']['faas_function'] == deployment_name]
cpu = 0
mem = 0
for pods in my_pods:
c = pods['cpu']
m = pods['memory']
try:
# converting everything in to millicores (m) 1 vCPU = 1000m
if c.endswith('n'):
cpu += (round(int(c.split('n')[0])/1e6, 4))
elif c.endswith('u'):
cpu += (round(int(c.split('u')[0])/1e3, 4))
elif c.endswith('m'):
cpu += (round(int(c.split('m')[0]), 4))
else:
cpu += 0
except Exception as e:
cpu += 0
try:
# converting everything into Gi
if m.endswith('Ki'):
mem += (round(int(m.split('Ki')[0])/(1024*1024), 4))
elif m.endswith('Mi'):
mem += (round(int(m.split('Mi')[0])/1024, 4))
elif m.endswith('Gi'):
mem += (round(int(m.split('Gi')[0]), 4))
else:
mem += 0
except Exception as e:
mem += 0
avg_cpu = round((cpu/len(my_pods))/self.func_cpu, 4)
avg_mem = round((mem/len(my_pods))/self.func_mem, 4)
except Exception as e:
print('pods not available for metrics')
# if len(my_pods) == 0: # case where pods are unavailable
my_pods = 0
avg_cpu = 0
avg_mem = 0
# get the next observation from the environment after action
obs = np.array([avg_execution, throughput, requests, replicas, avg_cpu, avg_mem])
return obs
def _write_to_board(self, obs, action, rew, info, step, episode):
# write to tensorboard
with self.file_writer.as_default():
tf.summary.scalar('avg_execution_time', obs[0], step)
tf.summary.scalar('throughput', obs[1], step)
tf.summary.scalar('requests', obs[2], step)
tf.summary.scalar('replicas', obs[3], step)
tf.summary.scalar('cpu', obs[4], step)
tf.summary.scalar('mem', obs[5], step)
tf.summary.scalar('episode', episode, step)
tf.summary.scalar('action', (action), step)
if info['action_feedback']:
tf.summary.scalar('action_feedback', 1 , step)
else:
tf.summary.scalar('action_feedback', 0 , step)
tf.summary.scalar('n-step_reward', rew, step)
# calculate and return reward based on the observation
def _calculate_reward(self, obs, metadata={}):
reward = 0
meta_scale_value = metadata['scale_value']
throughput = obs[1] # %
_ = obs[2]
replicas = obs[3]
avg_cpu = obs[4] # % 0 - 1
avg_mem = obs[5] # % 0 - 1
alpha = 0.75
beta = 0.125
gamma = 0.125
phi = 0.25
r_th = alpha * (throughput ** 2)
r_cpu = beta * (avg_cpu*100)
r_mem = gamma * (avg_mem*100)
r_rep = -phi * ((replicas - self.MIN_PODS) ** 2)
reward = r_th + r_cpu + r_mem + r_rep
reward = round(reward, 2)
# action unsuccessful
if (meta_scale_value != replicas):
reward += self.reward_range[0]
return reward
def reset(self, seed=None, options=None):
# We need the following line to seed self.np_random
super().reset(seed=seed)
# reset other paramters based on the environment
self.score = 0
self.loop = 0
observation = self._get_obs()
info = self._get_info()
self._last_obs = observation
return observation, info
def step(self, action):
done = False
# Map the action (element of {0,1,2,3,4}) to scaling
action = self._action_to_scale[action]
# execute the action in environment
info = self._take_action(action=action)
# immediate negative reward - invalid action
if info['action_feedback'] == False:
self._write_to_board(self._last_obs, action, -100, info, self.timestep, self.episode)
self.timestep += 1
self.loop += 1
self.score += -100
if self.loop == 10:
done = True
return self._last_obs, -100, done, False, info
else:
# wait for the sampling window to get the next observation
time.sleep(self.sampling_window)
# get the next observation
next_obs = self._get_obs()
# calculate reward
reward = self._calculate_reward(obs=next_obs, metadata=info)
self.score += round(reward, 2)
self._write_to_board(next_obs, action, reward, info, self.timestep, self.episode)
# counter for custom metrics
self.timestep += 1
if (self.timestep % 10 == 0):
done = True
self.episode += 1
self.loop = 0
self.reward_history.append(self.score)
with self.file_writer.as_default():
tf.summary.scalar('episodic_reward', self.score, self.episode)
tf.summary.scalar('mean_reward', np.mean(self.reward_history[-self._stats_window:]), self.episode)
self.score = 0
history = {'reward_history': self.reward_history,
'last_episode': self.episode}
# write the reward history to a file
with open(self._reward_file, "w") as outfile:
json.dump(history, outfile)
self._last_obs = next_obs
return next_obs, reward, done, False, info
def render(self, mode='human', close=False):
# render or print information on screen or add to the tensorboard, etc.
pass
def close(self):
# close any open resources
pass