-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsac_lstm_agent.py
278 lines (224 loc) · 11.9 KB
/
sac_lstm_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions import Normal
from common.buffers_lstm import *
from common.value_networks_lstm import *
from common.policy_networks_lstm import *
from IPython.display import clear_output
import matplotlib.pyplot as plt
from matplotlib import animation
from IPython.display import display
# from reacher import Reacher
import argparse
import time
from env import Environment as environment
import warnings
warnings.filterwarnings("ignore")
GPU = False
device_idx = 0
if GPU:
device = torch.device("cuda:" + str(device_idx) if torch.cuda.is_available() else "cpu")
else:
device = torch.device("cpu")
print(device)
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=False)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
np.random.seed(29)
class SAC_Trainer():
def __init__(self, replay_buffer, state_space, action_space, hidden_dim, action_range):
self.replay_buffer = replay_buffer
self.soft_q_net1 = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.soft_q_net2 = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.target_soft_q_net1 = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.target_soft_q_net2 = QNetworkLSTM(state_space, action_space, hidden_dim).to(device)
self.policy_net = SAC_PolicyNetworkLSTM(state_space, action_space, hidden_dim, action_range).to(device)
self.log_alpha = torch.zeros(1, dtype=torch.float32, requires_grad=True, device=device)
print('Soft Q Network (1,2): ', self.soft_q_net1)
print('Policy Network: ', self.policy_net)
for target_param, param in zip(self.target_soft_q_net1.parameters(), self.soft_q_net1.parameters()):
target_param.data.copy_(param.data)
for target_param, param in zip(self.target_soft_q_net2.parameters(), self.soft_q_net2.parameters()):
target_param.data.copy_(param.data)
self.soft_q_criterion1 = nn.MSELoss()
self.soft_q_criterion2 = nn.MSELoss()
soft_q_lr = 3e-4
policy_lr = 3e-4
alpha_lr = 3e-4
self.soft_q_optimizer1 = optim.Adam(self.soft_q_net1.parameters(), lr=soft_q_lr)
self.soft_q_optimizer2 = optim.Adam(self.soft_q_net2.parameters(), lr=soft_q_lr)
self.policy_optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr)
self.alpha_optimizer = optim.Adam([self.log_alpha], lr=alpha_lr)
def update(self, batch_size, reward_scale=10., auto_entropy=True, target_entropy=-2, gamma=0.99,soft_tau=1e-2):
hidden_in, hidden_out, state, action, last_action, reward, next_state, done = self.replay_buffer.sample(batch_size)
# print(state) # [[[state1],[state2],[state3],[state4] EPISODE1], [[state1],[state2],[state3],[state4] EPISODE2]]
state = torch.FloatTensor(state).to(device) # list of episode length of (batch_size, state_dim)
next_state = torch.FloatTensor(next_state).to(device)
action = torch.FloatTensor(action).to(device)
last_action = torch.FloatTensor((last_action)).to(device)
reward = torch.FloatTensor(reward).unsqueeze(-1).to(device) # reward is single value, unsqueeze() to add one dim to be [reward] at the sample dim;
done = torch.FloatTensor(np.float32(done)).unsqueeze(-1).to(device)
predicted_q_value1, _ = self.soft_q_net1(state, action, last_action, hidden_in)
predicted_q_value2, _ = self.soft_q_net2(state, action, last_action, hidden_in)
new_action, log_prob, _ = self.policy_net.evaluate(state, last_action, hidden_in)
new_next_action, next_log_prob, _ = self.policy_net.evaluate(next_state, action, hidden_out)
# reward = reward_scale * (reward - reward.mean(dim=0)) / (reward.std(dim=0) + 1e-6) # normalize with batch mean and std; plus a small number to prevent numerical problem
# Updating alpha wrt entropy
# alpha = 0.0 # trade-off between exploration (max entropy) and exploitation (max Q)
if auto_entropy is True:
alpha_loss = -(self.log_alpha * (log_prob + target_entropy).detach()).mean()
# print('alpha loss: ',alpha_loss)
self.alpha_optimizer.zero_grad()
alpha_loss.backward()
self.alpha_optimizer.step()
self.alpha = self.log_alpha.exp()
else:
self.alpha = 1.
alpha_loss = 0
# Training Q Function
predict_target_q1, _ = self.target_soft_q_net1(next_state, new_next_action, action, hidden_out)
predict_target_q2, _ = self.target_soft_q_net2(next_state, new_next_action, action, hidden_out)
target_q_min = torch.min(predict_target_q1, predict_target_q2) - self.alpha * next_log_prob
target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward
q_value_loss1 = self.soft_q_criterion1(predicted_q_value1, target_q_value.detach()) # detach: no gradients for the variable
q_value_loss2 = self.soft_q_criterion2(predicted_q_value2, target_q_value.detach())
self.soft_q_optimizer1.zero_grad()
q_value_loss1.backward()
self.soft_q_optimizer1.step()
self.soft_q_optimizer2.zero_grad()
q_value_loss2.backward()
self.soft_q_optimizer2.step()
# Training Policy Function
predict_q1, _= self.soft_q_net1(state, new_action, last_action, hidden_in)
predict_q2, _ = self.soft_q_net2(state, new_action, last_action, hidden_in)
predicted_new_q_value = torch.min(predict_q1, predict_q2)
policy_loss = (self.alpha * log_prob - predicted_new_q_value).mean()
self.policy_optimizer.zero_grad()
policy_loss.backward()
self.policy_optimizer.step()
# print('q loss: ', q_value_loss1, q_value_loss2)
# print('policy loss: ', policy_loss )
# Soft update the target value net
for target_param, param in zip(self.target_soft_q_net1.parameters(), self.soft_q_net1.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
for target_param, param in zip(self.target_soft_q_net2.parameters(), self.soft_q_net2.parameters()):
target_param.data.copy_( # copy data value into target parameters
target_param.data * (1.0 - soft_tau) + param.data * soft_tau
)
return predicted_new_q_value.mean()
def save_model(self, path):
torch.save(self.soft_q_net1.state_dict(), path+'_q1')
torch.save(self.soft_q_net2.state_dict(), path+'_q2')
torch.save(self.policy_net.state_dict(), path+'_policy')
def load_model(self, path):
self.soft_q_net1.load_state_dict(torch.load(path+'_q1'))
self.soft_q_net2.load_state_dict(torch.load(path+'_q2'))
self.policy_net.load_state_dict(torch.load(path+'_policy'))
self.soft_q_net1.eval()
self.soft_q_net2.eval()
self.policy_net.eval()
def plot(rewards):
clear_output(True)
plt.figure(figsize=(20,5))
plt.plot(rewards)
plt.savefig('{REWARDS}.png')
# plt.show()
replay_buffer_size = 1e6
replay_buffer = ReplayBufferLSTM2(replay_buffer_size)
env = environment()
action_space = env.action_space # Discrete action space
state_space = env.observation_space # Box state space - continuous
action_range=4.0 # for discrete action space, action range is the number of discrete actions-1
action_dim = (action_space.n) # Action space dimension
# hyper-parameters for RL training
max_episodes = 1000
max_steps = 10
batch_size = 128
explore_steps = 0 # for action sampling in the beginning of training
update_itr = 10 # repeated updates for single step - same as RPPO
AUTO_ENTROPY=True
DETERMINISTIC=False
hidden_dim =64
rewards = []
model_path = './model/{MODEL_NAME}'
sac_trainer=SAC_Trainer(replay_buffer, state_space, action_space, hidden_dim=hidden_dim, action_range=action_range )
if __name__ == '__main__':
if args.train:
# training loop
for eps in range(max_episodes):
# if ENV == 'Reacher':
# state = env.reset(SCREEN_SHOT)
# else:
state, info = env.reset() # state shape (6,)
last_action = env.action_space.sample()
print('last action: ', last_action)
episode_state = []
episode_action = []
episode_last_action = []
episode_reward = []
episode_next_state = []
episode_done = []
done = False
step = 0
# initialize hidden state for lstm, (hidden state, cell state), each is (seq_len, batch_size, hidden_dim)
hidden_out = (torch.zeros([1, 1, hidden_dim], dtype=torch.float), \
torch.zeros([1, 1, hidden_dim], dtype=torch.float))
# print('state: ', state.shape, 'last action: ', last_action.shape, 'hidden_out: ', hidden_out[0].shape, hidden_out[1].shape)
# break
while not done:
hidden_in = hidden_out # shape (1, 1, hidden_dim)
action, hidden_out = sac_trainer.policy_net.get_action(state, last_action, hidden_in, deterministic = DETERMINISTIC)
print('selected action: ', action)
next_state, reward, done, _, info = env.step(action)
# env.render()
if step == 0:
ini_hidden_in = hidden_in
ini_hidden_out = hidden_out
step += 1
episode_state.append(state)
episode_action.append(action)
episode_last_action.append(last_action)
episode_reward.append(reward)
episode_next_state.append(next_state)
episode_done.append(done)
state = next_state
last_action = action
if len(replay_buffer) > batch_size:
for i in range(update_itr):
_=sac_trainer.update(batch_size, reward_scale=10., auto_entropy=AUTO_ENTROPY, target_entropy=-1.*action_dim)
if done:
break
# break
replay_buffer.push(ini_hidden_in, ini_hidden_out, episode_state, episode_action, episode_last_action, \
episode_reward, episode_next_state, episode_done)
if eps % 20 == 0 and eps>0: # plot and model saving interval
plot(rewards)
np.save('rewards_lstm', rewards)
sac_trainer.save_model(model_path)
print('Episode: ', eps, '| Episode Reward: ', np.sum(episode_reward))
rewards.append(np.sum(episode_reward))
# sac_trainer.save_model(model_path)
if args.test:
sac_trainer.load_model(model_path)
for eps in range(200):
state, info = env.reset()
episode_reward = 0
done = False
last_action = env.action_space.sample()
# initialize hidden state for lstm, (hidden state, cell state), each is (seq_len, batch_size, hidden_dim)
hidden_out = (torch.zeros([1, 1, hidden_dim], dtype=torch.float), \
torch.zeros([1, 1, hidden_dim], dtype=torch.float))
while not done:
hidden_in = hidden_out # shape (1, 1, hidden_dim)
action, hidden_out = sac_trainer.policy_net.get_action(state, last_action, hidden_in, deterministic = DETERMINISTIC)
next_state, reward, done, _, info = env.step(action)
last_action = action
episode_reward += reward
state=next_state
print('Episode: ', eps, '| Episode Reward: ', episode_reward)