-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc3-main5.cpp
296 lines (268 loc) · 11.5 KB
/
c3-main5.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#include <carla/client/Client.h>
#include <carla/client/ActorBlueprint.h>
#include <carla/client/BlueprintLibrary.h>
#include <carla/client/Map.h>
#include <carla/geom/Location.h>
#include <carla/geom/Transform.h>
#include <carla/client/Sensor.h>
#include <carla/sensor/data/LidarMeasurement.h>
#include <thread>
#include <carla/client/Vehicle.h>
//pcl code
//#include "render/render.h"
namespace cc = carla::client;
namespace cg = carla::geom;
namespace csd = carla::sensor::data;
using namespace std::chrono_literals;
using namespace std::string_literals;
using namespace std;
#include <string>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/voxel_grid.h>
#include "helper.h"
#include <sstream>
#include <chrono>
#include <ctime>
#include <pcl/registration/icp.h>
#include <pcl/registration/ndt.h>
#include <pcl/console/time.h> // TicToc
PointCloudT pclCloud;
cc::Vehicle::Control control;
std::chrono::time_point<std::chrono::system_clock> currentTime;
vector<ControlState> cs;
bool refresh_view = false;
void keyboardEventOccurred(const pcl::visualization::KeyboardEvent &event, void* viewer)
{
//boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer = *static_cast<boost::shared_ptr<pcl::visualization::PCLVisualizer> *>(viewer_void);
if (event.getKeySym() == "Right" && event.keyDown()){
cs.push_back(ControlState(0, -0.02, 0));
}
else if (event.getKeySym() == "Left" && event.keyDown()){
cs.push_back(ControlState(0, 0.02, 0));
}
if (event.getKeySym() == "Up" && event.keyDown()){
cs.push_back(ControlState(0.1, 0, 0));
}
else if (event.getKeySym() == "Down" && event.keyDown()){
cs.push_back(ControlState(-0.1, 0, 0));
}
if(event.getKeySym() == "a" && event.keyDown()){
refresh_view = true;
}
}
//define ICP function
Eigen::Matrix4d ICP(pcl::PointCloud<PointT>::Ptr target, pcl::PointCloud<PointT>::Ptr source, Pose startPose, int iterations)
{
//initilize the matrix from the starting pose
Eigen::Matrix4d initTransform = transform3D(startPose.rotation.yaw, startPose.rotation.pitch, startPose.rotation.roll, startPose.position.x,
startPose.position.y, startPose.position.z);
//transform the source on the initial matrix
PointCloudT::Ptr transform_source (new PointCloudT);
pcl::transformPointCloud(*source, *transform_source, initTransform);
pcl::console::TicToc time;
time.tic ();
//define the parameters of iterative closest point method
pcl::IterativeClosestPoint<PointT,PointT> icp;
icp.setInputSource(transform_source);
icp.setInputTarget(target);
icp.setMaximumIterations(iterations);
icp.setMaxCorrespondenceDistance(2);
//align the source cloud
PointCloudT::Ptr cloud_icp (new PointCloudT);
icp.align(*cloud_icp);
//get the final tranform through the icp
Eigen::Matrix4d transformation_matrix = Eigen::Matrix4d::Identity(4,4);
if (icp.hasConverged())
{
transformation_matrix = icp.getFinalTransformation().cast<double>();
transformation_matrix = transformation_matrix * initTransform;
return transformation_matrix;
}
else{
cout<<"warning! ICP has not converged!"<<endl;
return transformation_matrix;
}
}
//define NDT function
Eigen::Matrix4d NDT(PointCloudT::Ptr mapCloud, PointCloudT::Ptr source, Pose startPose, int iterations)
{
//Eigen::Matrix4d transformation_matrix = Eigen::Matrix4d::Identity(4,4);
//initialize the starting pose to matrix
pcl::console::TicToc time;
time.tic ();
Eigen::Matrix4f init_guess = transform3D(startPose.rotation.yaw, startPose.rotation.pitch, startPose.rotation.roll, startPose.position.x,
startPose.position.y, startPose.position.z).cast<float>();
//set the parameters of ndt
pcl::NormalDistributionsTransform<PointT,PointT> ndt;
ndt.setMaximumIterations(iterations);
ndt.setTransformationEpsilon(1e-3);
//ndt.setStepSize(1);
ndt.setResolution(5);
ndt.setInputSource(source);
ndt.setInputTarget(mapCloud);
PointCloudT::Ptr ndt_cloud (new PointCloudT);
ndt.align(*ndt_cloud, init_guess);
//get the final transformation
Eigen::Matrix4d transformation_matrix = ndt.getFinalTransformation().cast<double>();
return transformation_matrix;
}
void Accuate(ControlState response, cc::Vehicle::Control& state){
if(response.t > 0){
if(!state.reverse){
state.throttle = min(state.throttle+response.t, 1.0f);
}
else{
state.reverse = false;
state.throttle = min(response.t, 1.0f);
}
}
else if(response.t < 0){
response.t = -response.t;
if(state.reverse){
state.throttle = min(state.throttle+response.t, 1.0f);
}
else{
state.reverse = true;
state.throttle = min(response.t, 1.0f);
}
}
state.steer = min( max(state.steer+response.s, -1.0f), 1.0f);
state.brake = response.b;
}
void drawCar(Pose pose, int num, Color color, double alpha, pcl::visualization::PCLVisualizer::Ptr& viewer){
BoxQ box;
box.bboxTransform = Eigen::Vector3f(pose.position.x, pose.position.y, 0);
box.bboxQuaternion = getQuaternion(pose.rotation.yaw);
box.cube_length = 4;
box.cube_width = 2;
box.cube_height = 2;
renderBox(viewer, box, num, color, alpha);
}
int main(){
auto client = cc::Client("localhost", 2000);
client.SetTimeout(2s);
auto world = client.GetWorld();
auto blueprint_library = world.GetBlueprintLibrary();
auto vehicles = blueprint_library->Filter("vehicle");
auto map = world.GetMap();
auto transform = map->GetRecommendedSpawnPoints()[1];
auto ego_actor = world.SpawnActor((*vehicles)[12], transform);
//Create lidar
auto lidar_bp = *(blueprint_library->Find("sensor.lidar.ray_cast"));
// CANDO: Can modify lidar values to get different scan resolutions
lidar_bp.SetAttribute("upper_fov", "15");
lidar_bp.SetAttribute("lower_fov", "-25");
lidar_bp.SetAttribute("channels", "32");
lidar_bp.SetAttribute("range", "30");
lidar_bp.SetAttribute("rotation_frequency", "60");
lidar_bp.SetAttribute("points_per_second", "500000");
auto user_offset = cg::Location(0, 0, 0);
auto lidar_transform = cg::Transform(cg::Location(-0.5, 0, 1.8) + user_offset);
auto lidar_actor = world.SpawnActor(lidar_bp, lidar_transform, ego_actor.get());
auto lidar = boost::static_pointer_cast<cc::Sensor>(lidar_actor);
bool new_scan = true;
std::chrono::time_point<std::chrono::system_clock> lastScanTime, startTime;
pcl::visualization::PCLVisualizer::Ptr viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
viewer->setBackgroundColor (0, 0, 0);
viewer->registerKeyboardCallback(keyboardEventOccurred, (void*)&viewer);
auto vehicle = boost::static_pointer_cast<cc::Vehicle>(ego_actor);
Pose pose(Point(0,0,0), Rotate(0,0,0));
// Load map
PointCloudT::Ptr mapCloud(new PointCloudT);
pcl::io::loadPCDFile("map.pcd", *mapCloud);
cout << "Loaded " << mapCloud->points.size() << " data points from map.pcd" << endl;
renderPointCloud(viewer, mapCloud, "map", Color(0,0,1));
typename pcl::PointCloud<PointT>::Ptr cloudFiltered (new pcl::PointCloud<PointT>);
typename pcl::PointCloud<PointT>::Ptr scanCloud (new pcl::PointCloud<PointT>);
lidar->Listen([&new_scan, &lastScanTime, &scanCloud](auto data){
if(new_scan){
auto scan = boost::static_pointer_cast<csd::LidarMeasurement>(data);
for (auto detection : *scan){
if((detection.x*detection.x + detection.y*detection.y + detection.z*detection.z) > 8.0){ // Don't include points touching ego
pclCloud.points.push_back(PointT(detection.x, detection.y, detection.z));
}
}
if(pclCloud.points.size() > 5000){ // CANDO: Can modify this value to get different scan resolutions
lastScanTime = std::chrono::system_clock::now();
*scanCloud = pclCloud;
new_scan = false;
}
}
});
Pose poseRef(Point(vehicle->GetTransform().location.x, vehicle->GetTransform().location.y, vehicle->GetTransform().location.z), Rotate(vehicle->GetTransform().rotation.yaw * pi/180, vehicle->GetTransform().rotation.pitch * pi/180, vehicle->GetTransform().rotation.roll * pi/180));
double maxError = 0;
while (!viewer->wasStopped())
{
while(new_scan){
std::this_thread::sleep_for(0.1s);
world.Tick(1s);
}
if(refresh_view){
viewer->setCameraPosition(pose.position.x, pose.position.y, 60, pose.position.x+1, pose.position.y+1, 0, 0, 0, 1);
refresh_view = false;
}
viewer->removeShape("box0");
viewer->removeShape("boxFill0");
Pose truePose = Pose(Point(vehicle->GetTransform().location.x, vehicle->GetTransform().location.y, vehicle->GetTransform().location.z), Rotate(vehicle->GetTransform().rotation.yaw * pi/180, vehicle->GetTransform().rotation.pitch * pi/180, vehicle->GetTransform().rotation.roll * pi/180)) - poseRef;
drawCar(truePose, 0, Color(1,0,0), 0.7, viewer);
double theta = truePose.rotation.yaw;
double stheta = control.steer * pi/4 + theta;
viewer->removeShape("steer");
renderRay(viewer, Point(truePose.position.x+2*cos(theta), truePose.position.y+2*sin(theta),truePose.position.z), Point(truePose.position.x+4*cos(stheta), truePose.position.y+4*sin(stheta),truePose.position.z), "steer", Color(0,1,0));
ControlState accuate(0, 0, 1);
if(cs.size() > 0){
accuate = cs.back();
cs.clear();
Accuate(accuate, control);
vehicle->ApplyControl(control);
}
viewer->spinOnce ();
if(!new_scan){
new_scan = true;
// TODO: (Filter scan using voxel filter)
pcl::VoxelGrid<PointT> vg;
vg.setInputCloud(scanCloud);
double filterRes = 1.0;
vg.setLeafSize(filterRes,filterRes,filterRes);
vg.filter(*cloudFiltered);
//NDT define only for NDT method
//pcl::NormalDistributionsTransform<PointT,PointT> ndt;
//ndt.setInputTarget(mapCloud);
// TODO: Find pose transform by using ICP or NDT matching
// define the ICP and NDT method for the comparison
//Eigen::Matrix4d transform = ICP(mapCloud, cloudFiltered, pose, 30);
Eigen::Matrix4d transform = NDT(mapCloud,cloudFiltered,pose,100);
pose = getPose(transform);
// TODO: Transform scan so it aligns with ego's actual pose and render that scan
viewer->removePointCloud("scan");
// TODO: Change `scanCloud` below to your transformed scan
PointCloudT::Ptr scan_transform (new PointCloudT);
pcl::transformPointCloud(*cloudFiltered, *scan_transform,transform);
renderPointCloud(viewer, scan_transform, "scan", Color(1,0,0) );
viewer->removeAllShapes();
drawCar(pose, 1, Color(0,1,0), 0.35, viewer);
double poseError = sqrt( (truePose.position.x - pose.position.x) * (truePose.position.x - pose.position.x) + (truePose.position.y - pose.position.y) * (truePose.position.y - pose.position.y) );
if(poseError > maxError)
maxError = poseError;
double distDriven = sqrt( (truePose.position.x) * (truePose.position.x) + (truePose.position.y) * (truePose.position.y) );
viewer->removeShape("maxE");
viewer->addText("Max Error: "+to_string(maxError)+" m", 200, 100, 32, 1.0, 1.0, 1.0, "maxE",0);
viewer->removeShape("derror");
viewer->addText("Pose error: "+to_string(poseError)+" m", 200, 150, 32, 1.0, 1.0, 1.0, "derror",0);
viewer->removeShape("dist");
viewer->addText("Distance: "+to_string(distDriven)+" m", 200, 200, 32, 1.0, 1.0, 1.0, "dist",0);
if(maxError > 1.2 || distDriven >= 170.0 ){
viewer->removeShape("eval");
if(maxError > 1.2){
viewer->addText("Try Again", 200, 50, 32, 1.0, 0.0, 0.0, "eval",0);
}
else{
viewer->addText("Passed!", 200, 50, 32, 0.0, 1.0, 0.0, "eval",0);
}
}
pclCloud.points.clear();
}
}
return 0;
}