-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
212 lines (189 loc) · 6.23 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.utils.data as data
import torch.optim as optim
import torchvision
from torchvision import models
import torchvision.transforms as transforms
#from torchsummary import summary
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from PIL import Image
from dataclass import DataClass
from models import Baseline, DCNNEnsemble_3, resnet152, TransferEnsemble, vgg19bn, dense161, resnext101, wres101, alex, google, shuffle, TransferEnsembleFrozen
from metrics import accuracy, evaluate
# --- CALCULATING IMAGE CHANNEL MEANS AND STANDARD DEVIATIONS---
# transform = transforms.Compose([transforms.ToTensor()])
# AllImages = torchvision.datasets.ImageFolder(root='.',transform=transform)
# imgloader = DataLoader(AllImages, shuffle =True, batch_size=1)
#
# Ch1Mean = 0.0
# Ch1SD = 0.0
# Ch2Mean = 0.0
# Ch2SD = 0.0
# Ch3Mean = 0.0
# Ch3SD = 0.0
#
# counter = 1
# for img in imgloader:
# print("Image Counter: ",counter)
# Ch1Mean += img[0][0][0].mean()
# Ch1SD += img[0][0][0].std()
# Ch2Mean += img[0][0][1].mean()
# Ch2SD += img[0][0][1].std()
# Ch3Mean += img[0][0][2].mean()
# Ch3SD += img[0][0][2].std()
# print('Ch1', Ch1SD, 'Ch2', Ch2SD, 'Ch3', Ch3SD)
# counter += 1
#
# Ch1Mean = Ch1Mean/len(AllImages)
# Ch1SD = Ch1SD/len(AllImages)
# Ch2Mean = Ch2Mean/len(AllImages)
# Ch2SD = Ch2SD/len(AllImages)
# Ch3Mean = Ch3Mean/len(AllImages)
# Ch3SD = Ch3SD/len(AllImages)
# print('Ch1',Ch1SD,'Ch2',Ch2SD,'Ch3',Ch3SD)
torch.cuda.empty_cache()
# print(Ch1Mean, "\n", Ch1SD, "\n", Ch2Mean, "\n", Ch2SD, "\n", Ch3Mean, "\n", Ch3SD)
Ch1Mean = 0.4882
Ch1SD = 2850.2090/12735
Ch2Mean = 0.4723
Ch2SD = 2754.8560/12735
Ch3Mean = 0.4512
Ch3SD = 2778.6946/12735
if torch.cuda.is_available():
torch.set_default_tensor_type(torch.cuda.FloatTensor)
transform = transforms.Compose([transforms.Resize((128,128)),transforms.ToTensor(),transforms.Normalize((Ch1Mean,Ch2Mean,Ch3Mean),(Ch1SD,Ch2SD,Ch3SD))])
image_data = torchvision.datasets.ImageFolder(root='./data',transform=transform)
# imgloader = torch.utils.data.DataLoader(image_data, batch_size=4, shuffle=True, num_workers=4)
# dataiter = iter(AllImagesLoader)
# images, labels = dataiter.next()
# ---ONEHOTENCODING IMAGE LABELS---
# Images are already classified with a number between 0-20, by the folder within which they were found in.
img_col = []
label_col = []
for i in image_data:
img_col.append(i[0].numpy())
label_col.append(i[1])
df_label = pd.DataFrame(label_col,columns=["phobia_type"])
ohe = OneHotEncoder(categories="auto")
M = df_label["phobia_type"].to_numpy().reshape(-1,1)
X = ohe.fit_transform(M).toarray()
dfOneHot = pd.DataFrame(X)
labelohe = dfOneHot.to_numpy()
# print('label',labelohe)
# print('img',img_col)
X_trval, X_test, Y_trval, Y_test= train_test_split(img_col,labelohe, test_size=0.2)
X_train, X_val, Y_train, Y_val = train_test_split(X_trval,Y_trval,test_size=0.2)
train = DataClass(X_train,Y_train)
valid = DataClass(X_val,Y_val)
test = DataClass(X_test,Y_test)
bs = 64
e_num = 20
trainloader = DataLoader(train, shuffle=True, batch_size=bs,pin_memory=False)
valloader = DataLoader(valid,shuffle=True,batch_size=bs,pin_memory=False)
torch.manual_seed(1)
# net = Baseline(1)
# net = DCNNEnsemble_3()
# net = resnet152()
# net = dense161()
# net = vgg19bn()
# net = TransferEnsemble()
# net = resnext101()
# net = wres101()
# net = alex()
# net = google()
# net = shuffle()
net = TransferEnsembleFrozen()
net = net.train()
# summary(net,(3,56,56))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
#
val_acc_tot = []
train_acc_tot = []
loss_tot = []
val_loss_tot = []
n_tot = []
step=15
j = 0
for epoch in range(e_num):
net = net.train()
sum_loss = 0
running_loss = 0
running_acc = 0
batchperepoch = 0
for i, data in enumerate(trainloader,0):
batchperepoch += 1
j += 1
print('Epoch #: ', epoch)
print('Batch #: ', j)
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
# print('batch label',labels)
# print('batch_label long',labels.long())
loss = criterion(outputs.squeeze(),torch.max(labels.long(),1)[1])
loss.backward()
optimizer.step()
running_loss += loss.detach()
running_acc += accuracy(outputs, labels)[0]
# if j%step== 0:
# if epoch%1 == epoch:
net = net.eval()
print(running_loss/batchperepoch)
loss_tot.append(running_loss/batchperepoch)
# t_acc = accuracy(outputs,labels)[0]
t_acc = running_acc/batchperepoch
train_acc_tot.append(t_acc)
# acc_tot.append(acc[0])
n_tot.append(epoch)
running_loss = 0
temp = evaluate(net, valloader)
val_loss_tot.append(temp[1])
val_acc_tot.append(temp[0])
print('Train Acc ', t_acc)
print('Validation Acc ', temp[0])
print('Train Loss', running_loss/batchperepoch)
print('Validation Loss', temp[1])
print('Finished Training')
print('Train Acc: ', train_acc_tot)
print('Val Acc: ', val_acc_tot)
print('Train Loss: ', loss_tot)
print('Valid Loss: ', val_loss_tot)
# print('Time Elapsed: ', end - start, 's')
plt.plot(n_tot, train_acc_tot, label='Training Accuracy')
plt.plot(n_tot, val_acc_tot, label='Validation Accuracy')
# plt.plot(loss_tot, label='Validation')
plt.title('Training and Validation Accuracy v.s. epoch')
plt.xlabel('epoch')
plt.ylabel('accuracy')
plt.legend()
plt.show()
plt.plot(n_tot, loss_tot, label='Training Loss')
plt.plot(n_tot, val_loss_tot, label='Validation Loss')
plt.title('Training and Validation Loss v.s. epoch')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.legend()
plt.show()
# plot loss/acc stuff
y_ground = []
y_pred = []
for j, batch in enumerate(valloader, 1):
valid_train, valid_label = batch
predict = net(valid_train.float())
predictions = predict.detach()
index = 0
for pred in predictions:
p_val, p_clas = torch.max(pred, 0)
v_val, v_clas = torch.max(valid_label[index], 0)
y_pred.append(p_clas.item())
y_ground.append(v_clas.item())
index += 1
print(confusion_matrix(y_ground,y_pred))