forked from coq/coq
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNaming.v
114 lines (90 loc) · 2.63 KB
/
Naming.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
(* This file checks the compatibility of naming strategy *)
(* This does not mean that the given naming strategy is good *)
Parameter x2:nat.
Definition foo y := forall x x3 x4 S, x + S = x3 + x4 + y.
Section A.
Variable x3:nat.
Goal forall x x1 x2 x3:nat,
(forall x x3:nat, x+x1 = x2+x3) -> x+x1 = x2+x3.
Show.
intros.
Show.
(* Remark: in V8.2, this used to be printed
x3 : nat
============================
forall x x1 x4 x5 : nat,
(forall x0 x6 : nat, x0 + x1 = x4 + x6) -> x + x1 = x4 + x5
before intro and
x3 : nat
x : nat
x1 : nat
x4 : nat
x0 : nat
H : forall x x3 : nat, x + x1 = x4 + x3
============================
x + x1 = x4 + x0
after. From V8.3, the quantified hypotheses are printed the sames as
they would be intro. However the hypothesis H remains printed
differently to avoid using the same name in autonomous but nested
subterms *)
Abort.
Goal forall x x1 x2 x3:nat,
(forall x x3:nat, x+x1 = x2+x3 -> foo (S x + x1)) ->
x+x1 = x2+x3 -> foo (S x).
Show.
unfold foo.
Show.
do 4 intro. (* --> x, x1, x4, x0, ... *)
Show.
do 2 intro.
Show.
do 4 intro.
Show.
(* Remark: in V8.2, this used to be printed
x3 : nat
============================
forall x x1 x4 x5 : nat,
(forall x0 x6 : nat,
x0 + x1 = x4 + x6 ->
forall x7 x8 x9 S0 : nat, x7 + S0 = x8 + x9 + (S x0 + x1)) ->
x + x1 = x4 + x5 -> forall x0 x6 x7 S0 : nat, x0 + S0 = x6 + x7 + S x
before the intros and
x3 : nat
x : nat
x1 : nat
x4 : nat
x0 : nat
H : forall x x3 : nat,
x + x1 = x4 + x3 ->
forall x0 x4 x5 S0 : nat, x0 + S0 = x4 + x5 + (S x + x1)
H0 : x + x1 = x4 + x0
x5 : nat
x6 : nat
x7 : nat
S : nat
============================
x5 + S = x6 + x7 + Datatypes.S x
after (note the x5/x0 and the S0/S) *)
Abort.
(* Check naming in hypotheses *)
Goal forall a, (a = 0 -> forall a, a = 0) -> a = 0.
intros.
Show.
apply H with (a:=a). (* test compliance with printing *)
Abort.
End A.
Module B.
(* Check valid/invalid implicit arguments *)
Definition f1 {x} (y:forall {x}, x=0) := x+0.
Definition f2 := (((fun x => 0):forall {x:nat}, nat), 0).
Definition f3 := fun {x} (y:forall {x}, x=0) => x+0.
Definition g1 {x} := match x with true => fun {x:bool} => x | false => fun x:bool => x end.
(* TODO: do not ignore the implicit here *)
Definition g2 '(x,y) {z} := x+y+z.
Definition h1 := fun x:nat => (fun {x} => x) 0.
Definition h2 := let g := forall {y}, y=0 in g.
Notation "∀ x .. y , P" := (forall x, .. (forall y, P) ..)
(at level 200, x binder, y binder, right associativity,
format "'[ ' '[ ' ∀ x .. y ']' , '/' P ']'") : type_scope.
Definition l1 := ∀ {x:nat} {y:nat}, x=0.
End B.