-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathllmprompt.py
368 lines (328 loc) · 12.1 KB
/
llmprompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import time
import json
import random
import datetime
import logging
import os
import re
import fire
import openai
from tqdm import tqdm
from llms.inference import generate
from prompts import *
logger = logging.getLogger(__name__)
try:
import utils
openai.api_key = utils.openai_api_key
openai.organization = utils.openai_edinburgh_organization
except ImportError:
logger.warning("Could not import OpenAI credentials")
openai.api_key = None
openai.organization = None
seed = 2024
split_formalization_and_proof = False
use_COT = True
use_COT_in_all = True
add_comment_and_use_COT = True
divinci_config = {
"temperature": 0,
"top_p": 1.0,
"frequency_penalty": 0.0,
"presence_penalty": 0.0,
"stop": "\n------------",
"max_tokens": 512,
}
gpt_config = {
"temperature": 0,
"top_p": 1.0,
}
if not split_formalization_and_proof:
prompt_inputs = [
ProofWriter_example_true_textual_input,
ProofWriter_example_false_textual_input,
ProofWriter_example_unknown_textual_input,
]
if not use_COT_in_all:
prompt_outputs = [
ProofWriter_example_true_all_output,
ProofWriter_example_false_all_output,
ProofWriter_example_unknown_all_output,
]
else:
if not add_comment_and_use_COT:
prompt_outputs = [
ProofWriter_example_true_all_COT_output,
ProofWriter_example_false_all_COT_output,
ProofWriter_example_unknown_all_COT_output,
]
else:
prompt_outputs = [
ProofWriter_example_true_all_COT_comment_output,
ProofWriter_example_false_all_COT_comment_output,
ProofWriter_example_unknown_all_COT_comment_output,
]
else:
prompt_inputs = [
ProofWriter_example_true_textual_input
+ "\n---\n"
+ ProofWriter_example_true_formalization,
ProofWriter_example_false_textual_input
+ "\n---\n"
+ ProofWriter_example_false_formalization,
ProofWriter_example_unknown_textual_input
+ "\n---\n"
+ ProofWriter_example_unknown_formalization,
]
if not use_COT:
prompt_outputs = [
ProofWriter_example_true_proof,
ProofWriter_example_false_proof,
ProofWriter_example_unknown_proof,
]
else:
prompt_outputs = [
ProofWriter_example_true_proof_COT,
ProofWriter_example_false_proof_COT,
ProofWriter_example_unknown_proof_COT,
]
proof_writer_answer_map = {"True": "A", "False": "B", "Unknown": "C"}
def data_generation_proofwriter(filename):
qa_pairs = []
# open jsonl file
with open(filename, "r") as json_file:
json_list = list(json_file)
for l in json_list:
d = json.loads(l.strip())
theory = d.get("theory")
questions = d.get("questions")
for key in questions.keys():
q = questions.get(key)
if q.get("QDep") == 5 and q.get("answer") != "Unknown":
question_temp = q.get("question")
answer = q.get("answer")
real_question = theory + " Question: " + question_temp + "?"
qa_pairs.append((real_question, answer))
random.seed(seed)
random_qa_pairs = random.sample(qa_pairs, 50)
random_qa_pairs_new = random.sample(qa_pairs, 300)
temp_random_qa_pairs = []
for item in random_qa_pairs_new:
if item not in random_qa_pairs:
temp_random_qa_pairs.append(item)
random_qa_pairs = random_qa_pairs[:5]
return temp_random_qa_pairs
def data_generation_proofwriter_logiclm(json_file):
d = json.load(open(json_file, "r"))
qa_pairs = []
random.seed(seed)
for item in d:
qa_pairs.append((item["context"], item["question"], item["answer"]))
# random_qa_pairs = random.sample(qa_pairs, 100)
return qa_pairs
def run_llm_prompt(model, prompt_input, **config):
if model == "text-davinci-003":
prompt = (
"Task Description: "
+ system_message
+ "\n\n------------"
+ "Input:\n"
+ prompt_inputs[0]
+ "- - - - - - - - - - - -"
+ prompt_outputs[0]
+ "\n------------"
+ "Input:\n"
+ prompt_inputs[1]
+ "- - - - - - - - - - - -"
+ prompt_outputs[1]
+ "\n------------"
+ "Input:\n"
+ prompt_inputs[2]
+ "- - - - - - - - - - - -"
+ prompt_outputs[2]
+ "\n------------"
+ "Input:\n"
+ prompt_input
+ "- - - - - - - - - - - -"
)
response = openai.Completion.create(
model=model,
prompt=prompt,
temperature=divinci_config["temperature"],
max_tokens=divinci_config["max_tokens"],
stop=divinci_config["stop"],
presence_penalty=divinci_config["presence_penalty"],
frequency_penalty=divinci_config["frequency_penalty"],
top_p=divinci_config["top_p"],
)
content = response["choices"][0]["text"].strip()
elif model == "gpt-4" or model == "gpt-3.5-turbo":
response = openai.ChatCompletion.create(
model=model,
messages=[
{
"role": "system",
"content": "Task Description: "
+ system_message
+ "\nI will give you some examples",
},
{
"role": "user",
"content": "Input:\n"
+ prompt_inputs[0]
+ "\n\nOutput:\n"
+ prompt_outputs[0],
},
{
"role": "user",
"content": "Input:\n"
+ prompt_inputs[1]
+ "\n\nOutput:\n"
+ prompt_outputs[1],
},
{
"role": "user",
"content": "Input:\n"
+ prompt_inputs[2]
+ "\n\nOutput:\n"
+ prompt_outputs[2],
},
{
"role": "assistant",
"content": "Now give me the result for this input: Input:\n"
+ prompt_input
+ "\n\nOutput:\n",
},
],
temperature=gpt_config["temperature"],
top_p=gpt_config["top_p"],
)
content = response["choices"][0]["message"]["content"].strip()
else:
system_prompt = (
f"Task Description: {system_message}\nI will give you some examples"
)
context_prompt = [
f"Input:\n{prompt_inputs[ii]}\n\nOutput:\n{prompt_outputs[2]}"
for ii in range(len(prompt_inputs))
]
context_prompt.append("Now give me the result for this input:\n\nInput:")
context_prompt = "\n".join(context_prompt)
user_prompt = "\n\nOutput:\n"
content = generate(
model,
[prompt_input],
model_system_prompt=system_prompt,
model_context_prompt=context_prompt,
model_user_prompt=user_prompt,
use_model_cache=True,
show_progress=False,
**config,
)[0]
response = None
return content, response
def get_model_answer(model_output):
answer_match = re.search('.*the answer is (\w+)', model_output)
if answer_match:
answer_key = answer_match.groups()[0]
else:
answer_key = model_output.strip().split("\n")[-1].split(" ")[-1]
answer_key = answer_key.replace(".", "").capitalize()
predicted_answer = proof_writer_answer_map[answer_key]
return predicted_answer
def run_prompt(random_qa_pairs, model, **kwargs):
# make a folder to store the outputs and config files, make sure the folder contain current timestamp and model name
timestamp = datetime.datetime.now().strftime("%Y_%b_%d_%H_%M_%S")
folder_name = "ProofWriter_" + timestamp + "_" + model.split('/')[-1]
os.mkdir(folder_name)
# dump the prompt to a file
write_file = open(folder_name + "/prompt.txt", "w")
write_file.write("System message:\n")
write_file.write(system_message + "\n\n")
for i in range(len(prompt_inputs)):
write_file.write("Example " + str(i + 1) + ":\n")
write_file.write(
"Input:\n"
+ prompt_inputs[i]
+ "\n\n"
+ "Output:\n"
+ prompt_outputs[i]
+ "\n\n"
)
write_file.close()
if model == "text-davinci-003":
config = divinci_config
elif model.startswith("gpt"):
config = gpt_config
else:
config = kwargs
# dump the config to a json file
with open(folder_name + "/config.json", "w") as json_file:
json.dump(config, json_file)
# make a json file to store the random_qa_pairs and its corresponding outputs
for i in tqdm(range(len(random_qa_pairs))):
try:
qa_pair = random_qa_pairs[i]
if not split_formalization_and_proof:
prompt_input = (
"Textual context: " + qa_pair[0] + "\n" + "Question: " + qa_pair[1]
)
else:
print(
"If you want to separate the formalization and proof process, you need to first generate the formalization then put the formalization into the prompt to generate proof. It is not supported in this project because it will generate inferior results."
)
exit(0)
content, response = run_llm_prompt(model, prompt_input, **config)
json_file = open(folder_name + "/output_" + str(i) + ".json", "w")
predicted_answer = get_model_answer(content)
d = {
"input": prompt_input,
"output": content,
"pred_answer": predicted_answer,
"gt_answer": qa_pair[-1],
"problem_id": i,
}
if response and "usage" in response:
d["input_tokens"] = response["usage"]["prompt_tokens"]
d["output_tokens"] = response["usage"]["completion_tokens"]
print(
"This is problem: "
+ str(i)
+ ". The predicted answer is: "
+ predicted_answer
+ ", The GT answer is: "
+ str(qa_pair[-1])
)
json.dump(d, json_file, indent=4, ensure_ascii=False)
json_file.close()
except KeyError as ex:
print("Error in problem: " + str(i) + ".")
print("Answer key:", ex)
print("Model output:\n", content)
def run(data_path, model="gpt-3.5-turbo", **kwargs):
start_time = time.time()
# select random questions from proofwriter OWA depth-5 dataset, to use it, download it from https://allenai.org/data/proofwriter
# random_qa_pairs = data_generation_proofwriter(filename='proofwriter-dataset-V2020.12.3/OWA/depth-5/meta-test.jsonl')
# as we're following the same setup as LogicLM, we use the same data
proof_writer_dev_qa_pairs = data_generation_proofwriter_logiclm(data_path)
run_prompt(proof_writer_dev_qa_pairs, model, **kwargs)
print("Time elapsed: ", time.time() - start_time)
if __name__ == "__main__":
fire.Fire(run)
"""To run this script:
1. Install thefonseca/llms:
> git clone https://github.com/thefonseca/llms.git
> cd llms
> pip install -e .
2. Run inference with LLama-2 (other models based on huggingface are supported):
> python llmprompt.py \
--data_path ../Logic-LLM/data/ProofWriter/dev.json \
--model llama-2-7b-chat \
--model_checkpoint_path /path/to/hugginface/checkpoint/ \
--model_dtype float16 \
--max_length 512
> python llmprompt.py \
--data_path ../Logic-LLM/data/ProofWriter/dev.json \
--model codellama/CodeLlama-7b-Instruct-hf \
--model_dtype float16 \
--max_length 512
"""