-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
290 lines (255 loc) · 15.4 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import json
import torch
import numpy as np
import random
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
import time
import argparse
from src.models.models_tailor import TAILOR
from src.models.models_tfn import TFN
from src.models.models_early import Early
from src.models.models_misa import MISA
from src.models.optimization import BertAdam
from src.models.confidnet import ConfidenceRegressionNetwork, Confidnet3Layers, Confidnet4Layers
from torch.utils.data import DataLoader
import torch.utils.data as data
from util import parallel_apply, get_logger, get_tcp_target
from train import get_dynamic_tcp, get_dynamic_ce
from src.dataloaders.cmu_dataloader import get_data
from src.utils.eval import get_metrics
from collections import defaultdict
import csv
import pickle
mosei_data_dir = '/data2/multimodal/train_valid_test.pt'
iemocap_data_dir = '/data2/multimodal/IEMOCAP'
global logger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def dataloader_test(args):
test_dataset = get_data(args, args.data, 'test')
label_input, label_mask = test_dataset._get_label_input()
test_dataloader = DataLoader(
test_dataset,
batch_size=args.batch_size,
# num_workers=4,
# pin_memory=False,
shuffle=args.shuffle,
# drop_last=True,
generator=torch.Generator(device=device).manual_seed(args.seed)
)
test_length = len(test_dataset)
return label_input, label_mask, test_dataloader, test_length
def load_model(args, n_gpu, device, model_file=None, kt_loss_weight=0.0):
logger.info("**** loading model_file=%s *****", model_file)
if os.path.exists(model_file):
if args.use_kt:
model_state_dict, optimizer_state = torch.load(model_file, map_location='cpu')
else:
model_state_dict = torch.load(model_file, map_location='cpu')
if args.local_rank == 0:
logger.info("Model loaded from %s", model_file)
# Prepare model
if args.model == "tailor":
model = TAILOR.from_pretrained(args.bert_model, args.visual_model, args.audio_model, args.cross_model, args.decoder_model, \
task_config=args, kt_loss_weight=kt_loss_weight, device=device)
hidden_size = args.hidden_size * args.num_classes
elif args.model == "tfn":
model = TFN(args, (128, 32, 32), 64, (0.3, 0.3, 0.3, 0.3), 128, device, kt_loss_weight=kt_loss_weight)
hidden_size = 128
elif args.model == "early":
model = Early(args, device, kt_loss_weight=kt_loss_weight)
hidden_size = args.text_dim + args.video_dim + args.audio_dim
elif args.model == "misa":
model = MISA(args, device, kt_loss_weight=kt_loss_weight)
hidden_size = args.hidden_size * 6
elif args.model == "amp":
model = MMERModel(args, device, d_model=args.hidden_size, kt_loss_weight=kt_loss_weight)
hidden_size = args.hidden_size * args.num_classes
elif args.model == "ours":
model = Ours(args, device, kt_loss_weight=kt_loss_weight)
hidden_size = args.hidden_size * args.num_classes
model.load_state_dict(model_state_dict)
model = model.to(device)
logger.info('***** loading model successful! *****')
if args.confidnet_file != "":
# confidnet = ConfidenceRegressionNetwork(args, hidden_size).to(device)
# confidnet = Confidnet3Layers(args, hidden_size).to(device)
confidnet = Confidnet4Layers(args, hidden_size).to(device)
confidnet.load_state_dict(torch.load(args.confidnet_file, map_location='cpu'))
else:
confidnet = None
else:
model = None
confidnet = None
return model, confidnet
def model_test(model, confidnet, test_dataloader, device, label_input, label_mask, kt_loss_weight=0.0):
model.eval()
results = defaultdict(list)
w_misalinged = defaultdict(list)
label_input = label_input.to(device)
label_mask = label_mask.to(device)
with torch.no_grad():
total_pred = []
total_true_label = []
idx = 0
for _, batch in enumerate(test_dataloader):
batch = tuple(t.to(device) for t in batch)
text, text_mask, video, video_mask, audio, audio_mask, ground_truth_labels = batch
true_label = ground_truth_labels.view(-1, args.num_classes)
if args.kt_model == "Dynamic-tcp" and confidnet is not None:
dynamic_weight, w = get_dynamic_tcp(model, confidnet, text, text_mask, video, video_mask,audio, audio_mask, label_input, label_mask, ground_truth_labels, device)
elif args.kt_model == "Dynamic-ce":
dynamic_weight, w = get_dynamic_ce(model, confidnet, text, text_mask, video, video_mask,audio, audio_mask, label_input, label_mask, ground_truth_labels, device)
else:
dynamic_weight, w = None, None
# if w is not None:
# w_misalinged["t_mask"].extend(w[0].detach().cpu().numpy())
# w_misalinged["v_mask"].extend(w[1].detach().cpu().numpy())
# w_misalinged["a_mask"].extend(w[2].detach().cpu().numpy())
# batch_logit, batch_pred, hidden_rep, true_label = model.inference(text, text_mask, video, video_mask, audio, audio_mask, \
# label_input, label_mask, groundTruth_labels=ground_truth_labels)
batch_logit, batch_pred, h, _, feats = model.inference(text, text_mask, \
video, video_mask, audio, audio_mask, label_input, label_mask)
total_pred.append(batch_pred)
total_true_label.append(true_label)
pred_list, tcp_list = get_making_results(model, text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, ground_truth_labels)
batch_size = ground_truth_labels.size(0)
index = [i for i in range(idx, idx+batch_size)]
idx += batch_size
results["index"].extend(index)
results["label"].extend(ground_truth_labels.detach().cpu().numpy())
results["prediction"].extend(batch_pred.detach().cpu().numpy())
results["predicted_scores"].extend(batch_logit.detach().cpu().numpy())
# results["att_weight"].extend(att_weight.detach().cpu().numpy())
if w is not None:
results["w_t_mask"].extend(w[0])
results["w_v_mask"].extend(w[1])
results["w_a_mask"].extend(w[2])
results["pred_AV"].extend(pred_list[0].cpu().numpy())
results["pred_TA"].extend(pred_list[1].cpu().numpy())
results["pred_TV"].extend(pred_list[2].cpu().numpy())
results["pred_T"].extend(pred_list[3].cpu().numpy())
results["pred_V"].extend(pred_list[4].cpu().numpy())
results["pred_A"].extend(pred_list[5].cpu().numpy())
results["tcp_TVA"].extend(get_tcp_target(ground_truth_labels, batch_logit).detach().cpu().numpy())
results["tcp_AV"].extend(tcp_list[0].detach().cpu().numpy())
results["tcp_TA"].extend(tcp_list[1].detach().cpu().numpy())
results["tcp_TV"].extend(tcp_list[2].detach().cpu().numpy())
results["tcp_T"].extend(tcp_list[3].detach().cpu().numpy())
results["tcp_V"].extend(tcp_list[4].detach().cpu().numpy())
results["tcp_A"].extend(tcp_list[5].detach().cpu().numpy())
results["feat_t"].extend(feats[0].detach().cpu().numpy())
results["feat_v"].extend(feats[1].detach().cpu().numpy())
results["feat_a"].extend(feats[2].detach().cpu().numpy())
total_pred=torch.cat(total_pred,0)
total_true_label = torch.cat(total_true_label, 0)
return total_pred, total_true_label, results
def get_making_results(model, text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, ground_trunth_labels):
logit_t_removed, pred_t_removed, _, _, _ = model.inference(text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, \
masked_modality=["text"], groundTruth_labels=ground_trunth_labels)
logit_v_removed, pred_v_removed, _, _, _ = model.inference(text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, \
masked_modality=["video"], groundTruth_labels=ground_trunth_labels)
logit_a_removed, pred_a_removed, _, _, _ = model.inference(text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, \
masked_modality=["audio"], groundTruth_labels=ground_trunth_labels)
logit_t_only, pred_t_only, _, _, _ = model.inference(text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, \
masked_modality=["video", "audio"], groundTruth_labels=ground_trunth_labels)
logit_v_only, pred_v_only, _, _, _ = model.inference(text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, \
masked_modality=["text", "audio"], groundTruth_labels=ground_trunth_labels)
logit_a_only, pred_a_only, _, _, _ = model.inference(text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, \
masked_modality=["text", "video"], groundTruth_labels=ground_trunth_labels)
pred_list = [pred_t_removed, pred_v_removed, pred_a_removed, pred_t_only, pred_v_only, pred_a_only]
tcp_list = [
get_tcp_target(ground_trunth_labels, logit_t_removed),
get_tcp_target(ground_trunth_labels, logit_v_removed),
get_tcp_target(ground_trunth_labels, logit_a_removed),
get_tcp_target(ground_trunth_labels, logit_t_only),
get_tcp_target(ground_trunth_labels, logit_v_only),
get_tcp_target(ground_trunth_labels, logit_a_only)
]
return pred_list, tcp_list
parser = argparse.ArgumentParser(description="model interfence")
parser.add_argument("--model", default="tailor", type=str, help="one of tailor, tfn, early, misa, amp")
# parser.add_argument("--data_path", default="/data2/multimodal/train_valid_test.pt", type=str, help='cmu_mosei data_path')
parser.add_argument("--model_file", default="", type=str, help="model store path")
parser.add_argument("--confidnet_file", default="", type=str, help="confidnet model store path")
parser.add_argument("--output_dir", default="/home/soyeon/workspace/Dike/checkpoint", type=str, required=False,
help="The output directory where the model predictions and checkpoints will be written.")
# parser.add_argument("--do_test", action='store_true', help="whether to run test")
parser.add_argument("--aligned", action='store_true', help="whether train align of unalign dataset")
parser.add_argument("--data", type=str, default="mosei", help="dataset")
parser.add_argument("--shuffle", type=bool, default=True, help="whether to shuffle the data")
parser.add_argument('--num_thread_reader', type=int, default=0, help='')
parser.add_argument('--max_words', type=int, default=60, help='')
parser.add_argument('--max_frames', type=int, default=60, help='')
parser.add_argument('--max_sequence', type=int, default=60, help='')
parser.add_argument("--visual_model", default="visual-base", type=str, required=False, help="Visual module")
parser.add_argument('--audio_model', default="audio-base", type=str, required=False, help='AUdio module')
parser.add_argument("--cross_model", default="cross-base", type=str, required=False, help="Cross module")
parser.add_argument("--bert_model", default="bert-base", type=str, required=False,
help="Bert pre-trained model")
parser.add_argument("--decoder_model", default="decoder-base", type=str, required=False, help="Decoder module")
parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
parser.add_argument("--num_labels", type=int, default=6, required=False)
parser.add_argument('--video_dim', type=int, default=35, required=False,help='video feature dimension')
parser.add_argument('--audio_dim', type=int, default=74, required=False, help='')
parser.add_argument('--text_dim', type=int, default=300, help='text_feature_dimension')
parser.add_argument('--bert_num_hidden_layers', type=int, default=6, help="Layer NO. of visual.")
parser.add_argument('--visual_num_hidden_layers', type=int, default=4, help="Layer NO. of visual.")
parser.add_argument('--audio_num_hidden_layers', type=int, default=4, help="Layer NO. of audio")
parser.add_argument('--cross_num_hidden_layers', type=int, default=3, help="Layer NO. of cross.")
parser.add_argument('--decoder_num_hidden_layers', type=int, default=1, help="Layer NO. of decoder.")
parser.add_argument("--num_classes", default=6, type=int, required=False)
parser.add_argument("--hidden_size",type=int, default=256)
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--threshold', type=float, default=0.5, help='threshold')
parser.add_argument('--use_kt', action='store_true', help='whether to use knowledge transfer')
parser.add_argument('--kt_model', type=str, default='Dynamic-tcp', help='knowledge transfer model')
args = parser.parse_args()
n_gpu = 1
kt_model_name = {'Static': 'const', 'Dynamic-ce': 'ce', 'Dynamic-tcp': 'confidnet'}
if args.use_kt:
args.output_dir = os.path.join(args.output_dir, f'{args.data}_{args.model}_{kt_model_name[args.kt_model]}')
else:
args.output_dir = os.path.join(args.output_dir, f'{args.data}_{args.model}')
if args.data == "mosei":
args.data_path = mosei_data_dir
elif args.data == "iemocap":
args.data_path = iemocap_data_dir
args.num_classes = 4
args.n_gpu = 1
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
logger = get_logger(os.path.join(args.output_dir, "log.txt"))
start=time.time()
if args.local_rank ==0:
model, confidnet = load_model(args, n_gpu, device, model_file=args.model_file)
logger.info("***** dataloader loading *****")
label_input, label_mask, test_dataloader, test_length = dataloader_test(args)
logger.info("***** Running test *****")
logger.info(" Num examples = %d", test_length)
logger.info(" Batch size = %d", 64)
logger.info(" Num steps = %d", len(test_dataloader))
total_pred, total_true_label, results = model_test(model, confidnet, test_dataloader, device, label_input, label_mask)
with open(os.path.join(args.output_dir, "model_test_results.csv"), 'w') as f:
key_list = list(results.keys())
writer = csv.writer(f)
writer.writerow(results.keys())
for i in range(len(results["index"])):
writer.writerow([results[x][i] for x in key_list])
with open(os.path.join(args.output_dir, "model_test_results.pkl"), 'wb') as f:
pickle.dump(results, f)
test_micro_f1, test_micro_precision, test_micro_recall, test_acc = get_metrics(total_pred, total_true_label)
logger.info("----- micro_f1: %f, micro_precision: %f, micro_recall: %f, acc: %f", \
test_micro_f1, test_micro_precision, test_micro_recall, test_acc)
logger.info("inference time: {}".format(time.time() - start))