-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
1070 lines (849 loc) · 49.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import json
import torch
import numpy as np
import random
import os
from collections import defaultdict
import csv
# os.environ["CUDA_VISIBLE_DEVICES"] = '1'
# os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
import sys
import time
import argparse
from pathlib import Path
from functools import partial
from datetime import timedelta
from src.models.confidnet import ConfidenceRegressionNetwork, Confidnet3Layers, Confidnet4Layers
from src.models.models_tfn import TFN
from src.models.models_early import Early
from src.models.models_tailor import TAILOR
from src.models.models_misa import MISA
from src.models.optimization import BertAdam
from src.utils.eval import get_metrics
from src.utils.eval_gap import *
from filelock import FileLock
from torch.utils.data import DataLoader, WeightedRandomSampler, RandomSampler, SequentialSampler
from torch.utils.data import random_split
import torch.utils.data as data
from util import parallel_apply, get_logger, get_tcp_target, binary_ce
from src.dataloaders.cmu_dataloader import prep_dataloader
import torch.nn.functional as F
import torch.nn.parallel as parallel
from timm.scheduler.cosine_lr import CosineLRScheduler
import ray
from ray import tune
from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler
from ray.air import session
from ray.air.checkpoint import Checkpoint
from ray.air.config import RunConfig
ray.init(local_mode=True)
mosei_data_dir = '/data2/multimodal/train_valid_test.pt'
iemocap_data_dir = '/data2/multimodal/IEMOCAP'
global logger
def get_args(description='Multi-modal Multi-label Emotion Recognition'):
parser = argparse.ArgumentParser(description=description)
parser.add_argument("--model", default="tailor", type=str, help="one of tailor, tfn, early, misa")
parser.add_argument("--do_train", default=True, action='store_true', help="Whether to run training.")
parser.add_argument("--do_test", default=False, action='store_true', help="whether to run test")
parser.add_argument("--aligned", action='store_true', help="whether train align of unalign dataset")
parser.add_argument("--data", default="mosei", type=str, help="one of mosei, iemocap")
parser.add_argument("--data_path", default="/data2/multimodal/train_valid_test.pt", type=str, help='cmu_mosei data_path')
parser.add_argument("--output_dir", default="/home/soyeon/workspace/Dike/checkpoint", type=str, required=False,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--pretrained_model", default=None, type=str, help="Initial model.")
parser.add_argument("--confidnet_model", default=None, type=str, help="Initial model.")
parser.add_argument('--num_thread_reader', type=int, default=0, help='')
parser.add_argument('--lr', type=float, default=5e-5, help='initial learning rate')
parser.add_argument('--epochs', type=int, default=1, help='upper epoch limit')
parser.add_argument('--unaligned_data_path', type=str, default='/amax/cmy/mosei_senti_data_noalign.pkl', help='load unaligned dataset')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--lr_decay', type=float, default=0.9, help='Learning rate exp epoch decay')
parser.add_argument('--n_display', type=int, default=10, help='Information display frequence')
parser.add_argument('--text_dim', type=int, default=300, help='text_feature_dimension')
parser.add_argument('--video_dim', type=int, default=35, help='video feature dimension')
parser.add_argument('--audio_dim', type=int, default=74, help='audio_feature_dimension')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--max_words', type=int, default=60, help='')
parser.add_argument('--max_frames', type=int, default=60, help='')
parser.add_argument('--max_sequence', type=int, default=60, help='')
parser.add_argument('--max_label', type=int, default=6, help='')
parser.add_argument("--bert_model", default="bert-base", type=str, required=False, help="Bert module")
parser.add_argument("--visual_model", default="visual-base", type=str, required=False, help="Visual module")
parser.add_argument("--audio_model", default="audio-base", type=str, required=False, help="Audio module")
parser.add_argument("--cross_model", default="cross-base", type=str, required=False, help="Cross module")
parser.add_argument("--decoder_model", default="decoder-base", type=str, required=False, help="Decoder module")
parser.add_argument("--init_model", default=None, type=str, required=False, help="Initial model.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--world_size", default=0, type=int, help="distribted training")
parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
parser.add_argument('--coef_lr', type=float, default=0.1, help='coefficient for bert branch.')
parser.add_argument('--bert_num_hidden_layers', type=int, default=6, help="Layer NO. of visual.")
parser.add_argument('--visual_num_hidden_layers', type=int, default=4, help="Layer NO. of visual.")
parser.add_argument('--audio_num_hidden_layers', type=int, default=4, help="Layer No. of audio")
parser.add_argument('--cross_num_hidden_layers', type=int, default=3, help="Layer NO. of cross.")
parser.add_argument('--decoder_num_hidden_layers', type=int, default=1, help="Layer NO. of decoder.")
parser.add_argument("--num_classes", default=6, type=int, required=False)
parser.add_argument("--hidden_size",type=int, default=256)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--use_bert', action='store_true', default=True, help="Changed in the execute process.")
parser.add_argument('--threshold', default=0.5, type=float, help='the threshold of whether the emotion exists.')
# Train DKT
parser.add_argument('--use_kt', action='store_true')
parser.add_argument('--kt_model', type=str,
default='Dynamic-tcp', help='one of {Static, Dynamic-ce, Dynamic-tcp}')
# parser.add_argument('--kt_weight', type=float, default=10000.0)
parser.add_argument('--epochs_kt', type=int, default=1)
# Train ConfidNet
parser.add_argument('--epochs_conf', type=int, default=500)
parser.add_argument('--conf_loss', type=str, default='mse', help='one of {mse, focal, ranking}')
parser.add_argument('--conf_lr', type=float, default=1e-5)
parser.add_argument('--conf_dropout', type=float, default=0.6)
args = parser.parse_args()
# Check paramenters
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if not args.do_train and not args.do_test:
raise ValueError("At least one of `do_train` or `do_test` must be True.")
args.batch_size = int(args.batch_size / args.gradient_accumulation_steps)
kt_model_name = {'Static': 'const', 'Dynamic-ce': 'ce', 'Dynamic-tcp': 'confidnet'}
if args.use_kt:
args.output_dir = os.path.join(args.output_dir, f'{args.data}_{args.model}_{kt_model_name[args.kt_model]}') if args.aligned else \
os.path.join(args.output_dir, f'{args.data}_unaligned_{args.model}_{kt_model_name[args.kt_model]}')
else:
args.output_dir = os.path.join(args.output_dir, f'{args.data}_{args.model}') if args.aligned else \
os.path.join(args.output_dir, f'{args.data}_unaligned_{args.model}')
if args.data == "mosei":
args.data_path = mosei_data_dir
elif args.data == "iemocap":
args.data_path = iemocap_data_dir
args.num_classes = 4
return args
def set_seed_logger(args):
global logger
# predefining random initial seeds
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.set_device(args.local_rank)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
logger = get_logger(os.path.join(args.output_dir, "log.txt"))
if args.local_rank == 0:
logger.info("Effective parameters:")
for key in sorted(args.__dict__):
logger.info(" <<< {}: {}".format(key, args.__dict__[key]))
return args
def init_device(args, local_rank):
global logger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", local_rank)
n_gpu = 1
logger.info("device: {} n_gpu: {}".format(device, n_gpu))
args.n_gpu = n_gpu
if args.batch_size % args.n_gpu != 0:
raise ValueError("Invalid batch_size/batch_size_val and n_gpu parameter: {}%{} and {}%{}, should be == 0".format(
args.batch_size, args.n_gpu, args.batch_size_val, args.n_gpu))
return device, n_gpu
def init_model(args, device, kt_loss_weight=None):
# kt_loss_weight = torch.tensor(kt_loss_weight).to(device)
# Prepare model
if args.model == "tailor":
model = TAILOR.from_pretrained(args.bert_model, args.visual_model, args.audio_model, args.cross_model, args.decoder_model, \
task_config=args, kt_loss_weight=kt_loss_weight, device=device)
elif args.model == "tfn":
model = TFN(args, (128, 32, 32), 64, (0.3, 0.3, 0.3, 0.3), 128, device, kt_loss_weight=kt_loss_weight)
elif args.model == "early":
model = Early(args, device, kt_loss_weight=kt_loss_weight)
elif args.model == "misa":
model = MISA(args, device, kt_loss_weight=kt_loss_weight)
else:
raise ValueError("Invalid model: {}".format(args.model))
if args.n_gpu > 1:
model = torch.nn.DataParallel(model).to(device)
num_params = count_parameters(model)
# logger.info("Total Parameter: \t%2.1fM" % num_params)
if hasattr(model, 'module'):
model = model.module.to(device)
return model
def count_parameters(model):
params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return params / 1000000
def prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, local_rank, coef_lr=1.):
if hasattr(model, 'module'):
model = model.module
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
no_decay_param_tp = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_decay)]
decay_param_tp = [(n, p) for n, p in param_optimizer if any(nd in n for nd in no_decay)]
no_decay_bert_param_tp = [(n, p) for n, p in no_decay_param_tp if "audio." in n]
no_decay_nobert_param_tp = [(n, p) for n, p in no_decay_param_tp if "audio." not in n]
decay_bert_param_tp = [(n, p) for n, p in decay_param_tp if "audio." in n]
decay_nobert_param_tp = [(n, p) for n, p in decay_param_tp if "audio." not in n]
optimizer_grouped_parameters = [
{'params': [p for n, p in no_decay_bert_param_tp], 'weight_decay': 0.01, 'lr': args.lr * 1.0},
{'params': [p for n, p in no_decay_nobert_param_tp], 'weight_decay': 0.01},
{'params': [p for n, p in decay_bert_param_tp], 'weight_decay': 0.0, 'lr': args.lr * 1.0},
{'params': [p for n, p in decay_nobert_param_tp], 'weight_decay': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.lr, warmup=args.warmup_proportion,
schedule='warmup_linear', t_total=num_train_optimization_steps, weight_decay=0.01,
max_grad_norm=1.0)
scheduler = None
return optimizer, scheduler, model
def save_model(args, model, epoch, confidnet=False):
# Only save the model it-self
model_to_save = model.module if hasattr(model, 'module') else model
if confidnet:
output_model_file = os.path.join(
args.output_dir, "pytorch_model_confidnet_{}.bin.".format(epoch))
else:
output_model_file = os.path.join(
args.output_dir, "pytorch_model_{}.bin.".format(epoch))
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Model saved to %s", output_model_file)
return output_model_file
def load_model(epoch, args, n_gpu, device, model_file=None, confidnet=False):
if model_file is None or len(model_file) == 0:
if confidnet:
model_file = os.path.join(args.output_dir, "pytorch_model_confidnet_{}.bin.".format(epoch))
else:
model_file = os.path.join(args.output_dir, "pytorch_model_{}.bin.".format(epoch))
if os.path.exists(model_file):
model_state_dict = torch.load(model_file, map_location='cpu')
if args.local_rank == 0:
logger.info("Model loaded from %s", model_file)
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = TAILOR.from_pretrained(args.bert_model, args.visual_model, args.audio_model, args.cross_model,
cache_dir=cache_dir, state_dict=model_state_dict, task_config=args, device=device)
if n_gpu > 1:
model = torch.nn.DataParallel(model).to(device)
else:
model.to(device)
else:
model = None
return model
def get_dynamic_tcp(model, confidnet, pairs_text, pairs_mask, video, video_mask, audio, audio_mask, label_input, label_mask, ground_label, device):
outputs, _, h, _, _ = model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask,\
label_input, label_mask, ground_label, dynamic_weight=None)
# Predict the model confidence
confid_z = confidnet.inference(h)
# Get the tcp for the masked modalities
_, _, h_t_removed, _, _ = model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, ground_label, masked_modality=["text"], dynamic_weight=None)
tcp_t_removed = confidnet.inference(h_t_removed)
_, _, h_v_removed, _, _ = model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, ground_label, masked_modality=["video"], dynamic_weight=None)
tcp_v_removed = confidnet.inference(h_v_removed)
_, _, h_a_removed, _, _ = model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, ground_label, masked_modality=["audio"], dynamic_weight=None)
tcp_a_removed = confidnet.inference(h_a_removed)
w_misaligned = [tcp_t_removed, tcp_v_removed, tcp_a_removed]
dynamic_weight = [
[tcp_t_removed[i] if tcp_t_removed[i] > tcp_v_removed[i] else 0 for i in range(len(tcp_t_removed))], # text > video
[tcp_t_removed[i] if tcp_t_removed[i] > tcp_a_removed[i] else 0 for i in range(len(tcp_t_removed))], # text > audio
[tcp_v_removed[i] if tcp_v_removed[i] > tcp_t_removed[i] else 0 for i in range(len(tcp_v_removed))], # video > text
[tcp_v_removed[i] if tcp_v_removed[i] > tcp_a_removed[i] else 0 for i in range(len(tcp_v_removed))], # video > audio
[tcp_a_removed[i] if tcp_a_removed[i] > tcp_t_removed[i] else 0 for i in range(len(tcp_a_removed))], # audio > text
[tcp_a_removed[i] if tcp_a_removed[i] > tcp_v_removed[i] else 0 for i in range(len(tcp_a_removed))] # audio > video
]
dynamic_weight = torch.tensor(dynamic_weight, dtype=torch.float).permute(1, 0).to(device)
return dynamic_weight, w_misaligned
def get_dynamic_ce(model, confidnet, pairs_text, pairs_mask, video, video_mask,audio, audio_mask, label_input, label_mask, ground_label, device):
output, _, _, _, _ = model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask,\
label_input, label_mask, ground_label, dynamic_weight=None)
output_t_removed, _, _, _, _ = model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, ground_label, masked_modality=["text"], dynamic_weight=None)
output_v_removed, _, _, _, _ = model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, ground_label, masked_modality=["video"], dynamic_weight=None)
output_a_removed, _, _, _, _ = model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, ground_label, masked_modality=["audio"], dynamic_weight=None)
t_mask_loss = binary_ce(output, output_t_removed)
v_mask_loss = binary_ce(output, output_v_removed)
a_mask_loss = binary_ce(output, output_a_removed)
w_misaligned = [t_mask_loss, v_mask_loss, a_mask_loss]
dynamic_weight = [
[t_mask_loss[i] if t_mask_loss[i] > v_mask_loss[i] else 0 for i in range(len(t_mask_loss))], \
[t_mask_loss[i] if t_mask_loss[i] > a_mask_loss[i] else 0 for i in range(len(t_mask_loss))], \
[v_mask_loss[i] if v_mask_loss[i] > t_mask_loss[i] else 0 for i in range(len(t_mask_loss))], \
[v_mask_loss[i] if v_mask_loss[i] > a_mask_loss[i] else 0 for i in range(len(t_mask_loss))], \
[a_mask_loss[i] if a_mask_loss[i] > t_mask_loss[i] else 0 for i in range(len(t_mask_loss))], \
[a_mask_loss[i] if a_mask_loss[i] > v_mask_loss[i] else 0 for i in range(len(t_mask_loss))]
]
dynamic_weight = torch.tensor(dynamic_weight, dtype=torch.float).to(device)
return dynamic_weight, w_misaligned
def train(args, device, n_gpu, n_epochs=40):
global logger
# init model
model = init_model(args, device)
if args.aligned == False:
logger.warning("!!!!!!!!!!!!!! you start train unaligned dataset")
else:
logger.warning("!!!!!!!!!!!!!! you start train aligned dataset")
print('***** dataloder preping ... *****')
train_dataloader, val_dataloader, test_dataloader, train_length, val_length, test_length, label_input, label_mask = prep_dataloader(args)
label_input = label_input.to(device)
label_mask = label_mask.to(device)
num_train_optimization_steps = (int(len(train_dataloader) + args.gradient_accumulation_steps - 1)
/ args.gradient_accumulation_steps) * args.epochs
coef_lr = args.coef_lr
if args.init_model:
coef_lr = 1.0
# init optimizer
optimizer, scheduler, model = prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, \
args.local_rank, coef_lr=coef_lr)
# if args.local_rank == 0:
logger.info("***** Running baseline training *****")
logger.info(" Total optimization epochs = %d", n_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.batch_size / args.n_gpu)
best_score = 0.000
best_output_model_file = None
global_step = 0
best_model = None
model.zero_grad()
set_seed_logger(args) # Added here for reproductibility
for epoch in range(n_epochs): # loop over the dataset multiple times
model.train()
log_step = args.n_display
local_rank = args.local_rank
start_time = time.time()
total_loss = 0
total_pred = []
total_true_label = []
total_pred_scores = []
for step, batch in enumerate(train_dataloader):
# torch.cuda.empty_cache()
if n_gpu == 1:
# multi-gpu does scattering it-self
batch = tuple(t.to(device=device, non_blocking=True) for t in batch)
pairs_text, pairs_mask, video, video_mask,audio, audio_mask, ground_label = batch
dynamic_weight = None
model_loss, batch_pred, true_label, pred_scores = model(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, label_input, label_mask, \
groundTruth_labels=ground_label, training=True, kt_training=False, dynamic_weight=dynamic_weight)
if n_gpu > 1:
model_loss = model_loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
model_loss = model_loss / args.gradient_accumulation_steps
model_loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if scheduler is not None:
scheduler.step(epoch) # Update learning rate schedule
optimizer.step()
optimizer.zero_grad()
global_step += 1
# if global_step % log_step == 0 and local_rank == 0:
if global_step % log_step == 0:
logger.info("Epoch: %d/%d, Step: %d/%d, Lr: %s, loss: %f, Time/step: %f", epoch + 1,
args.epochs, step + 1,
# len(train_dataloader), "-".join([str('%.6f'%itm) for itm in sorted(list(set(optimizer.get_lr())))]),float(model_loss),
len(train_dataloader), "-".join([str('%.6f'%itm) for itm in sorted(list(set([param_group['lr'] for param_group in optimizer.param_groups])))]),float(model_loss),
(time.time() - start_time) / (log_step * args.gradient_accumulation_steps))
start_time = time.time()
total_loss += float(model_loss)
total_pred.append(batch_pred)
total_true_label.append(true_label)
total_pred_scores.append(pred_scores)
if scheduler is not None:
scheduler.step(epoch)
total_loss = total_loss / len(train_dataloader)
total_pred=torch.cat(total_pred,0)
total_true_label = torch.cat(total_true_label, 0)
total_pred_scores = torch.cat(total_pred_scores, 0)
total_micro_f1, total_micro_precision, total_micro_recall, total_acc = get_metrics(total_pred, total_true_label)
total_pred_scores = total_pred_scores.data.cpu().numpy()
total_true_label = total_true_label.data.cpu().numpy()
train_gap = calculate_gap(total_pred_scores, total_true_label)
# if args.local_rank == 0:
logger.info("Epoch %d/%d Finished, Train Loss: %f, Train_micro_f1: %f, Train_micro_precision: %f, Train_micro_recall: %f, Train_acc: %f, train_gap: %f", \
epoch + 1, args.epochs, total_loss, total_micro_f1, total_micro_precision, total_micro_recall, total_acc, train_gap)
# if args.local_rank == 0:
# Validation
logger.info("***** Running baseline valing *****")
logger.info(" Num examples = %d", val_length)
logger.info(" Batch_size = %d", args.batch_size)
# val_pred, val_label, val_pred_scores, val_loss = eval_epoch(args, model, val_dataloader, device, n_gpu, label_input, label_mask)
if hasattr(model, 'module'):
model = model.module.to(device)
# else:
# if n_gpu > 1:
# model = torch.nn.DataParallel(model).to(device)
# else:
# model.to(device)
model.eval()
with torch.no_grad():
val_pred = []
val_label = []
val_pred_scores = []
losses = []
for _, batch in enumerate(val_dataloader):
batch = tuple(t.to(device) for t in batch)
text, text_mask, video, video_mask, audio, audio_mask, groundTruth_labels = batch
_, batch_pred, true_label, pred_scores = model(text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, groundTruth_labels=groundTruth_labels, training=False)
val_pred.append(batch_pred)
val_label.append(true_label)
val_pred_scores.append(pred_scores)
val_pred=torch.cat(val_pred,0)
val_label = torch.cat(val_label, 0)
val_pred_scores = torch.cat(val_pred_scores, 0)
val_micro_f1, val_micro_precision, val_micro_recall, val_acc = get_metrics(val_pred, val_label)
val_pred_scores = val_pred_scores.data.cpu().numpy()
val_label = val_label.data.cpu().numpy()
val_gap = calculate_gap(val_pred_scores, val_label)
logger.info("----- micro_f1: %f, micro_precision: %f, micro_recall: %f, acc: %f, val_gap: %f", \
val_micro_f1, val_micro_precision, val_micro_recall, val_acc, val_gap)
output_model_file = save_model(args, model, epoch)
if best_score <= val_micro_f1:
best_score = val_micro_f1
best_model = model
best_output_model_file = output_model_file
logger.info("The best model is: {}, the f1 is: {:.4f}".format(best_output_model_file, best_score))
logger.info("Training finished!")
logger.info("***** Running baseline testing *****")
logger.info(" Num examples = %d", test_length)
logger.info(" Batch_size = %d", args.batch_size)
if hasattr(best_model, 'module'):
best_model = best_model.module.to(device)
# else:
# if n_gpu > 1:
# model = torch.nn.DataParallel(model).to(device)
# else:
# model.to(device)
best_model.eval()
with torch.no_grad():
test_pred = []
test_label = []
test_pred_scores = []
losses = []
for _, batch in enumerate(test_dataloader):
batch = tuple(t.to(device) for t in batch)
text, text_mask, video, video_mask, audio, audio_mask, groundTruth_labels = batch
_, batch_pred, true_label, pred_scores = best_model(text, text_mask, video, video_mask, audio, audio_mask, label_input, label_mask, groundTruth_labels=groundTruth_labels, training=False)
test_pred.append(batch_pred)
test_label.append(true_label)
test_pred_scores.append(pred_scores)
test_pred=torch.cat(test_pred,0)
test_label = torch.cat(test_label, 0)
test_pred_scores = torch.cat(test_pred_scores, 0)
test_micro_f1, test_micro_precision, test_micro_recall, test_acc = get_metrics(test_pred, test_label)
test_pred_scores = test_pred_scores.data.cpu().numpy()
test_label = test_label.data.cpu().numpy()
test_gap = calculate_gap(test_pred_scores, test_label)
logger.info("----- micro_f1: %f, micro_precision: %f, micro_recall: %f, acc: %f, test_gap: %f", \
test_micro_f1, test_micro_precision, test_micro_recall, test_acc, test_gap)
return best_model, best_output_model_file
def train_confidnet(args, model, device, n_gpu, n_epochs=100):
global logger
local_rank = args.local_rank
assert model is not None, "Please specify the exact model !"
# if n_gpu > 1:
# model = torch.nn.DataParallel(model).to(device)
# else:
# model.to(device)
model.eval()
# init confidence network
if args.model == "tailor":
hidden_size = args.hidden_size * args.num_classes
elif args.model == "tfn":
hidden_size = 128
elif args.model == "early":
hidden_size = args.text_dim + args.video_dim + args.audio_dim
elif args.model == "misa":
hidden_size = args.hidden_size * 6
confidnet = Confidnet4Layers(args, hidden_size)
if args.confidnet_model is not None:
confidnet.load_state_dict(torch.load(args.confidnet_model))
return confidnet
confidnet = confidnet.to(device)
conf_optimizer = torch.optim.Adam(confidnet.parameters(), lr=args.conf_lr)
train_dataloader, val_dataloader, test_dataloader, train_length, val_length, test_length, \
label_input, label_mask = prep_dataloader(args, zero_label_process=True)
label_input = label_input.to(device)
label_mask = label_mask.to(device)
num_train_optimization_steps = (int(len(train_dataloader) + args.gradient_accumulation_steps - 1)
/ args.gradient_accumulation_steps) * args.epochs
logger.info("***** Running ConfidNet training *****")
logger.info(" Num examples = %d", train_length)
logger.info(" Batch size = %d", args.batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps * args.gradient_accumulation_steps)
best_score = 1e+10
best_output_model_file = None
global_step = 0
for epoch in range(n_epochs):
confidnet.train()
log_step = args.n_display
start_time = time.time()
total_loss = 0
for param in model.parameters():
param.requires_grad = False
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
pairs_text, pairs_mask, video, video_mask,audio, audio_mask, ground_label = batch
batch_pred, pred_labels, hidden_state, true_labels, _ = \
model.inference(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, groundTruth_labels=ground_label)
target_tcp = get_tcp_target(ground_label, batch_pred)
loss, preds = confidnet(hidden_state, target_tcp)
loss.backward()
total_loss += float(loss)
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(confidnet.parameters(), 1.0)
conf_optimizer.step()
conf_optimizer.zero_grad()
global_step += 1
# if global_step % log_step == 0 and local_rank == 0:
if global_step % log_step == 0:
logger.info("Epoch: %d/%d, Step: %d/%d, loss: %f, Time/step: %f", epoch + 1,
args.epochs, step + 1,
len(train_dataloader), float(loss),
(time.time() - start_time))
start_time = time.time()
total_loss = total_loss / len(train_dataloader)
# if args.local_rank == 0:
logger.info("Epoch %d/%d Finished, Train Loss: %f", \
epoch + 1, n_epochs, total_loss)
# if args.local_rank == 0:
logger.info("***** Running ConfidNet valing *****")
logger.info(" Num examples = %d", val_length)
logger.info(" Batch_size = %d", args.batch_size)
# Validation
# val_loss = conf_eval_epoch(args, model, confidnet, val_dataloader, device, label_input, label_mask)
confidnet.eval()
for param in model.parameters():
param.requires_grad = False
with torch.no_grad():
val_loss = 0
for _, batch in enumerate(val_dataloader):
batch = tuple(t.to(device) for t in batch)
text, text_mask, video, video_mask, audio, audio_mask, groundTruth_labels = batch
batch_pred, pred_labels, hidden_state, true_labels, _ = \
model.inference(text, text_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, groundTruth_labels=groundTruth_labels)
target_tcp = get_tcp_target(groundTruth_labels, batch_pred)
loss, preds = confidnet(hidden_state, target_tcp)
val_loss += float(loss)
val_loss = total_loss / len(val_dataloader)
logger.info("----- val_loss: %f", val_loss)
output_model_file = save_model(args, confidnet, epoch, confidnet=True)
if best_score >= val_loss:
best_score = val_loss
best_confidnet = confidnet
best_output_model_file = output_model_file
logger.info("The best confidnet is: {}, the loss is: {:.4f}".format(best_output_model_file, best_score))
# if args.local_rank == 0:
logger.info('***** Running ConfidNet testing *****')
logger.info(' Num examples = %d', test_length)
logger.info(" Batch_size = %d", args.batch_size)
# Test
# test_loss = conf_eval_epoch(args, model, best_confidnet, test_dataloader, device, label_input, label_mask)
confidnet.eval()
for param in model.parameters():
param.requires_grad = False
with torch.no_grad():
test_loss = 0
for _, batch in enumerate(test_dataloader):
batch = tuple(t.to(device) for t in batch)
text, text_mask, video, video_mask, audio, audio_mask, groundTruth_labels = batch
batch_pred, pred_labels, hidden_state, true_labels, _ = \
model.inference(text, text_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, groundTruth_labels=groundTruth_labels)
target_tcp = get_tcp_target(groundTruth_labels, batch_pred)
loss, preds = confidnet(hidden_state, target_tcp)
test_loss += float(loss)
test_loss = total_loss / len(test_dataloader)
logger.info("----- test_loss: %f", test_loss)
return confidnet
def train_kt(tune_config, args, device, n_gpu, pretrained_model=None, confidnet=None, n_epochs=50):
# def train_kt(args, device, n_gpu, pretrained_model=None, confidnet=None, n_epochs=50):
# @ray.remote
global logger
train_time = time.time()
# init model
model = init_model(args, device, tune_config["kt_loss_weight"])
# model = init_model(args, device, kt_loss_weight=1)
if pretrained_model is not None:
model.load_state_dict(torch.load(pretrained_model))
if args.aligned == False:
logger.warning("!!!!!!!!!!!!!! you start train unaligned dataset")
else:
logger.warning("!!!!!!!!!!!!!! you start train aligned dataset")
print('***** dataloder preping ... *****')
train_dataloader, val_dataloader, test_dataloader, train_length, val_length, test_length, label_input, label_mask = prep_dataloader(args)
label_input = label_input.to(device)
label_mask = label_mask.to(device)
num_train_optimization_steps = (int(len(train_dataloader) + args.gradient_accumulation_steps - 1)
/ args.gradient_accumulation_steps) * args.epochs
coef_lr = args.coef_lr
if args.init_model:
coef_lr = 1.0
# init optimizer
optimizer, scheduler, model = prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, \
args.local_rank, coef_lr=coef_lr)
# To restore a checkpoint, use `session.get_checkpoint()`.
# loaded_checkpoint = session.get_checkpoint()
# if loaded_checkpoint:
# with loaded_checkpoint.as_directory() as loaded_checkpoint_dir:
# model_state, optimizer_state = torch.load(os.path.join(loaded_checkpoint_dir, "checkpoint.pt"))
# model.load_state_dict(model_state)
# optimizer.load_state_dict(optimizer_state)
# if args.local_rank == 0:
logger.info("***** Running Dike training *****")
logger.info(" Num examples = %d", train_length)
logger.info(" Batch size = %d", args.batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps * args.gradient_accumulation_steps)
best_score = 0.000
best_output_model_file = None
global_step = 0
best_model = None
for epoch in range(n_epochs): # loop over the dataset multiple times
model.train()
log_step = args.n_display
local_rank = args.local_rank
start_time = time.time()
total_loss = 0
total_pred = []
total_true_label = []
total_pred_scores = []
w_misaligned_dict = defaultdict(list)
# breakpoint()
for step, batch in enumerate(train_dataloader):
# torch.cuda.empty_cache()
if n_gpu == 1:
# multi-gpu does scattering it-self
batch = tuple(t.to(device=device, non_blocking=True) for t in batch)
pairs_text, pairs_mask, video, video_mask,audio, audio_mask, ground_label = batch
w = None
# get dynamic weight
if args.kt_model == "Dynamic-tcp" and confidnet is not None:
dynamic_weight, w = get_dynamic_tcp(model, confidnet, pairs_text, pairs_mask, video, video_mask,audio, audio_mask, label_input, label_mask, ground_label, device)
elif args.kt_model == "Dynamic-ce":
dynamic_weight, w = get_dynamic_ce(model, confidnet, pairs_text, pairs_mask, video, video_mask,audio, audio_mask, label_input, label_mask, ground_label, device)
else:
dynamic_weight = None
# if kt_train and epoch in [args.epochs_kt - 1, args.epochs_kt - 1-10, args.epochs_kt - 1-20, 0]:
# w_misaligned_dict['t_mask'].extend(w[0].cpu().detach().numpy())
# w_misaligned_dict['v_mask'].extend(w[1].cpu().detach().numpy())
# w_misaligned_dict['a_mask'].extend(w[2].cpu().detach().numpy())
model_loss, batch_pred, true_label, pred_scores = model(pairs_text, pairs_mask, video, video_mask, audio, audio_mask, label_input, label_mask, \
groundTruth_labels=ground_label, training=True, kt_training=True, dynamic_weight=dynamic_weight)
if n_gpu > 1:
model_loss = model_loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
model_loss = model_loss / args.gradient_accumulation_steps
model_loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if scheduler is not None:
scheduler.step(epoch) # Update learning rate schedule
optimizer.step()
optimizer.zero_grad()
global_step += 1
# if global_step % log_step == 0 and local_rank == 0:
if global_step % log_step == 0:
logger.info("Epoch: %d/%d, Step: %d/%d, Lr: %s, loss: %f, Time/step: %f", epoch + 1,
args.epochs, step + 1,
# len(train_dataloader), "-".join([str('%.6f'%itm) for itm in sorted(list(set(optimizer.get_lr())))]),float(model_loss),
len(train_dataloader), "-".join([str('%.6f'%itm) for itm in sorted(list(set([param_group['lr'] for param_group in optimizer.param_groups])))]),float(model_loss),
(time.time() - start_time) / (log_step * args.gradient_accumulation_steps))
start_time = time.time()
total_loss += float(model_loss)
total_pred.append(batch_pred)
total_true_label.append(true_label)
total_pred_scores.append(pred_scores)
# if kt_train and epoch in [args.epochs_kt - 1, args.epochs_kt - 1-10, args.epochs_kt - 1-20, 0]:
# with open(os.path.join(args.output_dir, "w_misaligned"+str(epoch)+".csv"), 'w') as f:
# key_list = list(w_misaligned_dict.keys())
# writer = csv.writer(f)
# writer.writerow(w_misaligned_dict.keys())
# for i in range(len(w_misaligned_dict["t_mask"])):
# writer.writerow([w_misaligned_dict[x][i] for x in key_list])
total_loss = total_loss / len(train_dataloader)
total_pred=torch.cat(total_pred,0)
total_true_label = torch.cat(total_true_label, 0)
total_pred_scores = torch.cat(total_pred_scores, 0)
total_micro_f1, total_micro_precision, total_micro_recall, total_acc = get_metrics(total_pred, total_true_label)
total_pred_scores = total_pred_scores.data.cpu().numpy()
total_true_label = total_true_label.data.cpu().numpy()
train_gap = calculate_gap(total_pred_scores, total_true_label)
# if args.local_rank == 0:
logger.info("Epoch %d/%d Finished, Train Loss: %f, Train_micro_f1: %f, Train_micro_precision: %f, Train_micro_recall: %f, Train_acc: %f, train_gap: %f", \
epoch + 1, args.epochs, total_loss, total_micro_f1, total_micro_precision, total_micro_recall, total_acc, train_gap)
# if args.local_rank == 0:
# Validation
logger.info("***** Running Dike valing *****")
logger.info(" Num examples = %d", val_length)
logger.info(" Batch_size = %d", args.batch_size)
# val_pred, val_label, val_pred_scores, val_loss = eval_epoch(args, model, val_dataloader, device, n_gpu, label_input, label_mask)
if hasattr(model, 'module'):
model = model.module.to(device)
# else:
# if n_gpu > 1:
# model = torch.nn.DataParallel(model).to(device)
# else:
# model.to(device)
model.eval()
with torch.no_grad():
val_pred = []
val_label = []
val_pred_scores = []
losses = []
for _, batch in enumerate(val_dataloader):
batch = tuple(t.to(device) for t in batch)
text, text_mask, video, video_mask, audio, audio_mask, groundTruth_labels = batch
# get dynamic weight
if args.kt_model == "Dynamic-tcp" and confidnet is not None:
dynamic_weight, w = get_dynamic_tcp(model, confidnet, pairs_text, pairs_mask, video, video_mask,audio, audio_mask, label_input, label_mask, ground_label, device)
elif args.kt_model == "Dynamic-ce":
dynamic_weight, w = get_dynamic_ce(model, confidnet, pairs_text, pairs_mask, video, video_mask,audio, audio_mask, label_input, label_mask, ground_label, device)
else:
dynamic_weight = None
loss, batch_pred, true_label, pred_scores = model(text, text_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, groundTruth_labels=groundTruth_labels, training=False, dynamic_weight=dynamic_weight)
val_pred.append(batch_pred)
val_label.append(true_label)
val_pred_scores.append(pred_scores)
losses.append(loss)
val_pred=torch.cat(val_pred,0)
val_label = torch.cat(val_label, 0)
val_pred_scores = torch.cat(val_pred_scores, 0)
val_loss = sum(losses) / len(losses)
val_micro_f1, val_micro_precision, val_micro_recall, val_acc = get_metrics(val_pred, val_label)
val_pred_scores = val_pred_scores.data.cpu().numpy()
val_label = val_label.data.cpu().numpy()
val_gap = calculate_gap(val_pred_scores, val_label)
val_loss = val_loss.data.cpu().numpy()
# Here we save a checkpoint. It is automatically registered with
# Ray Tune and can be accessed through `session.get_checkpoint()`
# API in future iterations.
checkpoint = Checkpoint.from_directory(args.output_dir)
session.report({"loss": val_loss, "accuracy": val_acc, "micro_f1": val_micro_f1}, checkpoint=checkpoint)
logger.info(tune_config)
logger.info("----- micro_f1: %f, micro_precision: %f, micro_recall: %f, acc: %f, val_gap: %f", \
val_micro_f1, val_micro_precision, val_micro_recall, val_acc, val_gap)
output_model_file = save_model(args, model, epoch)
if best_score <= val_micro_f1:
best_score = val_micro_f1
best_model = model
best_output_model_file = output_model_file
torch.save(
(model.state_dict(), optimizer.state_dict()), args.output_dir + "/checkpoint.pt")
logger.info("The best model is: {}, the f1 is: {:.4f}".format(best_output_model_file, best_score))
logger.info('Finished Training')
def test_best_model(best_result, args, device, n_gpu, confidnet=None):
kt_loss_weight = best_result.config['kt_loss_weight']
best_trained_model = init_model(args, device, kt_loss_weight)
checkpoint_path = os.path.join(best_result.checkpoint.to_directory(), "checkpoint.pt")
# checkpoint_path = session.get_checkpoint()
model_state, optimizer_state = torch.load(checkpoint_path)
best_trained_model.load_state_dict(model_state)
train_dataloader, val_dataloader, test_dataloader, train_length, val_length, test_length, label_input, label_mask = prep_dataloader(args)
label_input = label_input.to(device)
label_mask = label_mask.to(device)
logger.info('***** Running total testing *****')
logger.info(' Num examples = %d', test_length)
logger.info(" Batch_size = %d", args.batch_size)
# test_pred, test_label, test_pred_scores, test_loss = eval_epoch(args, best_trained_model, test_dataloader, device, n_gpu, label_input, label_mask)
best_trained_model.eval()
with torch.no_grad():
total_pred = []
test_label = []
test_pred_scores = []
losses = []
for _, batch in enumerate(test_dataloader):
batch = tuple(t.to(device) for t in batch)
text, text_mask, video, video_mask, audio, audio_mask, groundTruth_labels = batch
# get dynamic weight
if args.kt_model == "Dynamic-tcp" and confidnet is not None:
dynamic_weight, w = get_dynamic_tcp(best_trained_model, confidnet, text, text_mask, video, video_mask,audio, audio_mask, label_input, label_mask, groundTruth_labels, device)
elif args.kt_model == "Dynamic-ce":
dynamic_weight, w = get_dynamic_ce(best_trained_model, confidnet, text, text_mask, video, video_mask,audio, audio_mask, label_input, label_mask, groundTruth_labels, device)
else:
dynamic_weight = None
pred_scores, batch_pred, hidden_state, true_label, _ = best_trained_model.inference(text, text_mask, video, video_mask, audio, audio_mask, \
label_input, label_mask, groundTruth_labels=groundTruth_labels, dynamic_weight=dynamic_weight)
total_pred.append(batch_pred)
test_label.append(true_label)
test_pred_scores.append(pred_scores)
# losses.append(loss)
total_pred=torch.cat(total_pred,0)
test_label = torch.cat(test_label, 0)
test_pred_scores = torch.cat(test_pred_scores, 0)
# test_loss = sum(losses) / len(losses)
test_micro_f1, test_micro_precision, test_micro_recall, test_acc = get_metrics(total_pred, test_label)
test_pred_scores = test_pred_scores.data.cpu().numpy()
test_label = test_label.data.cpu().numpy()
test_gap = calculate_gap(test_pred_scores, test_label)
logger.info("Best trial test set result:")
logger.info("----- micro_f1: %f, micro_precision: %f, micro_recall: %f, acc: %f, test_gap: %f", \
test_micro_f1, test_micro_precision, test_micro_recall, test_acc, test_gap)
def main():
global logger
args = get_args()
args = set_seed_logger(args)
device, n_gpu = init_device(args, args.local_rank)