generated from SparkJiao/pytorch-transformers-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredictor.py
204 lines (171 loc) · 8.13 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# coding=utf-8
#
# Part of this code is based on the source code of Transformers
# (arXiv:1910.03771)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import logging
import os
import sys
import hydra
import torch
from omegaconf import DictConfig
from torch import distributed as dist
from torch.utils.data import (DataLoader, SequentialSampler)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from transformers import (AutoTokenizer, PreTrainedTokenizer)
from general_util.logger import setting_logger
from general_util.training_utils import batch_to_device, unwrap_model, set_seed, load_and_cache_examples
torch.backends.cuda.matmul.allow_tf32 = True
logger: logging.Logger
def evaluate(cfg, model, tokenizer: PreTrainedTokenizer, prefix="", _split="dev"):
dataset = load_and_cache_examples(cfg, tokenizer, _split=_split)
output_dir = cfg.prediction_dir if getattr(cfg, "prediction_dir", False) else os.path.join(cfg.output_dir, prefix)
if cfg.local_rank in [-1, 0] and not os.path.exists(output_dir):
os.makedirs(output_dir)
cfg.eval_batch_size = cfg.per_gpu_eval_batch_size
if _split == 'dev' and cfg.ddp_eval and cfg.local_rank != -1:
eval_sampler = DistributedSampler(dataset, shuffle=False)
else:
eval_sampler = SequentialSampler(dataset) # Note that DistributedSampler samples randomly
eval_collator = hydra.utils.instantiate(cfg.collator) if "collator" in cfg and cfg.collator else None
eval_dataloader = DataLoader(dataset,
sampler=eval_sampler,
batch_size=cfg.eval_batch_size,
collate_fn=eval_collator)
single_model_gpu = unwrap_model(model)
single_model_gpu.get_eval_log(reset=True)
# Eval!
torch.cuda.empty_cache()
logger.info("***** Running evaluation {} *****".format(_split))
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", cfg.eval_batch_size)
# Seems FSDP does not need to unwrap the model for evaluating.
model.eval()
input_ids_list = []
logits_list = []
pred_list = []
index_list = []
for batch in tqdm(eval_dataloader, desc="Evaluating", disable=cfg.local_rank not in [-1, 0], dynamic_ncols=True):
if "index" in batch:
feat_index = batch.pop("index")
if isinstance(feat_index, torch.Tensor):
index_list.append(feat_index)
else:
index_list.extend(feat_index)
batch = batch_to_device(batch, cfg.device)
if cfg.fp16:
with torch.cuda.amp.autocast(dtype=(torch.bfloat16 if getattr(cfg, "fp16_bfloat16", False) else torch.float16)):
with torch.no_grad():
outputs = model(**batch)
else:
with torch.no_grad():
outputs = model(**batch)
logits = outputs["logits"].detach()
probs = outputs["logits"].softmax(dim=-1).detach()
_, pred = probs.max(dim=-1)
input_ids = batch["input_ids"]
if cfg.local_rank != -1 and cfg.sync:
_all_logits = [torch.zeros(logits.size()).to(logits.device) for _ in range(dist.get_world_size())]
_all_preds = [torch.zeros(pred.size(), dtype=torch.long).to(probs.device) for _ in range(dist.get_world_size())]
dist.all_gather(_all_logits, logits)
dist.all_gather(_all_preds, pred)
logits_list.extend([x.cpu() for x in _all_logits])
pred_list.extend([x.cpu() for x in _all_preds])
_all_input_ids = [
torch.zeros(input_ids.size(), dtype=torch.long).to(input_ids.device) for _ in range(dist.get_world_size())]
dist.all_gather(_all_input_ids, input_ids)
input_ids_list.extend([x.cpu() for x in _all_input_ids])
else:
logits_list.append(logits.cpu())
pred_list.append(pred.cpu())
input_ids_list.append(input_ids.cpu())
metric_log, results = single_model_gpu.get_eval_log(reset=True, ddp=(_split == 'dev' and cfg.ddp_eval), device=cfg.device)
logger.info("****** Evaluation Results ******")
logger.info(metric_log)
if cfg.local_rank in [-1, 0] or not cfg.sync:
predictions = {
"logits": torch.cat(logits_list, dim=0),
"preds": torch.cat(pred_list, dim=0),
# "input_ids": torch.cat(input_ids_list, dim=0),
}
if len(index_list) > 0:
# predictions["index"] = torch.cat(index_list, dim=0)
if isinstance(index_list[0], torch.Tensor):
predictions["index"] = torch.cat(index_list, dim=0)
else:
predictions["index"] = index_list
if cfg.local_rank == -1:
torch.save(predictions, os.path.join(output_dir, f"prediction.pth"))
else:
torch.save(predictions, os.path.join(output_dir, f"prediction_{cfg.local_rank}.pth"))
return results
@hydra.main(config_path="conf", config_name="config")
def main(cfg: DictConfig):
if cfg.local_rank == -1 or cfg.no_cuda:
device = str(torch.device("cuda" if torch.cuda.is_available() and not cfg.no_cuda else "cpu"))
cfg.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(cfg.local_rank)
device = str(torch.device("cuda", cfg.local_rank))
dist.init_process_group(backend='nccl')
cfg.n_gpu = 1
cfg.world_size = dist.get_world_size()
cfg.device = device
global logger
logger = setting_logger(cfg.output_dir, local_rank=cfg.local_rank)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
cfg.local_rank, device, cfg.n_gpu, bool(cfg.local_rank != -1), cfg.fp16)
# Set seed
set_seed(cfg)
# Test
results = {}
checkpoints = [cfg.output_dir]
if cfg.save_best:
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
elif cfg.prediction_cfg.best_checkpoint and os.path.exists(cfg.prediction_cfg.best_checkpoint):
checkpoints = [cfg.prediction_cfg.best_checkpoint]
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
elif cfg.eval_sub_path:
checkpoints = list(
os.path.dirname(c) for c in
sorted(glob.glob(cfg.output_dir + f"/{cfg.eval_sub_path}/" + "pytorch_model.bin", recursive=True))
)
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info(" the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1]
split = "dev"
model = hydra.utils.call(cfg.model, checkpoint)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
if cfg.test_file:
prefix = f'test' + (f'-{prefix}' if prefix != "" else "")
split = "test"
result = evaluate(cfg, model, tokenizer, prefix=prefix, _split=split)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
hydra_formatted_args = []
# convert the cli params added by torch.distributed.launch into Hydra format
for arg in sys.argv:
if arg.startswith("--"):
hydra_formatted_args.append(arg[len("--"):])
else:
hydra_formatted_args.append(arg)
sys.argv = hydra_formatted_args
main()