generated from SparkJiao/pytorch-transformers-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathservice_api_caller_v1.py
126 lines (97 loc) · 3.75 KB
/
service_api_caller_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# coding=utf-8
#
# Copyright 2020 Heinrich Heine University Duesseldorf
#
# Part of this code is based on the source code of BERT-DST
# (arXiv:1907.03040)
# Part of this code is based on the source code of Transformers
# (arXiv:1910.03771)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import logging
import sys
import os
import hydra
import torch
from torch.utils.data import DataLoader
from omegaconf import DictConfig
from tqdm import tqdm
from general_util.logger import setting_logger
from general_util.training_utils import set_seed, load_and_cache_examples
"""
Requires torch >= 1.11.0 if you want to enable the torch vanilla FSDP instead of that of fairscale.
"""
logger: logging.Logger
torch.backends.cuda.matmul.allow_tf32 = True
def default_collate_fn(batch):
return batch[0]
def run_inference(cfg: DictConfig, dataset):
post_processor = hydra.utils.instantiate(cfg.post_process)
# Eval!
logger.info("***** Running inference through OpenAI API *****")
logger.info(" Num examples = %d", len(dataset))
logger.info(" Batch size = %d", cfg.per_gpu_eval_batch_size)
eval_dataloader = DataLoader(dataset,
# sampler=eval_sampler,
batch_size=1,
collate_fn=default_collate_fn,
num_workers=cfg.num_workers,
pin_memory=True,
prefetch_factor=cfg.prefetch_factor)
for batch in tqdm(eval_dataloader, desc="Evaluating", disable=cfg.local_rank not in [-1, 0], dynamic_ncols=True):
if "meta_data" in batch:
meta_data = batch.pop("meta_data")
else:
meta_data = []
# outputs = model(**batch)
outputs = batch
if any(hasattr(post_processor, tmp) for tmp in ["gather", "gather_object"]):
kwargs = {
"ddp": cfg.ddp_eval and cfg.local_rank != -1
}
else:
kwargs = {}
post_processor(meta_data, outputs, **kwargs)
sig = inspect.signature(post_processor.get_results)
post_kwargs = {}
if "output_dir" in list(sig.parameters.keys()):
post_kwargs["output_dir"] = cfg.output_dir
results, predictions = post_processor.get_results(**post_kwargs)
logger.info(f"=================== Results =====================")
for key, value in results.items():
logger.info(f"{key}: {value}")
return results
@hydra.main(config_path="conf", config_name="config", version_base="1.2")
def main(cfg: DictConfig):
global logger
logger = setting_logger(cfg.output_file, local_rank=cfg.local_rank)
# Set seed
set_seed(cfg)
# model = hydra.utils.call(cfg.model)
dataset = load_and_cache_examples(cfg, None, _split="test")
# Test
results = run_inference(cfg, dataset)
return results
if __name__ == "__main__":
os.environ["HYDRA_FULL_ERROR"] = "1"
hydra_formatted_args = []
# convert the cli params added by torch.distributed.launch into Hydra format
for arg in sys.argv:
if arg.startswith("--"):
hydra_formatted_args.append(arg[len("--"):])
else:
hydra_formatted_args.append(arg)
sys.argv = hydra_formatted_args
print(sys.argv)
main()