generated from SparkJiao/pytorch-transformers-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lomo.py
132 lines (115 loc) · 5.54 KB
/
train_lomo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import copy
import os
import sys
import torch
from transformers import HfArgumentParser
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from transformers import set_seed
from dataclasses import asdict
from transformers.deepspeed import HfDeepSpeedConfig
import wandb
import hydra
from omegaconf import OmegaConf
# os.environ['WANDB_MODE'] = 'debug'
python_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
print("PYTHON_PATH", python_path)
sys.path.append(python_path)
from lomo.src.arguments import ModelArguments, DataArguments, MyTrainingArguments
from lomo.src.mydatasets import MyDataset, get_dataset_info
from lomo.src.lomo_trainer import LOMOTrainer
def compute_metrics(all_pred, eval_dataset, eval_prefix=None):
golds = [ins['answer'] for ins in eval_dataset.data]
preds = all_pred[:len(golds)]
acc = round(sum([int(pred == gold) for pred, gold in zip(preds, golds)]) / len(golds), 6)
result = {'acc': acc}
return result
def train():
# ========== 1. logs and args ==========
torch.set_default_dtype(torch.float16)
parser = HfArgumentParser((ModelArguments, DataArguments, MyTrainingArguments))
if sys.argv[-1].endswith(".yaml"):
model_args, data_args, training_args = parser.parse_yaml_file(yaml_file=os.path.abspath(sys.argv[-1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
set_seed(training_args.seed)
model_name = model_args.model_name_or_path.split('/')[-1]
tag_name = '_'.join(
[data_args.dataset_name, model_name, training_args.tag] if training_args.tag else [data_args.dataset_name, model_name])
hparam_name = 'output'
if training_args.optim != 'sgd':
hparam_name += '_' + training_args.optim
if training_args.learning_rate != 5e-4:
hparam_name += '_lr' + str(training_args.learning_rate)
if training_args.per_device_train_batch_size != 8:
hparam_name += '_bs' + str(training_args.per_device_train_batch_size)
if training_args.lr_scheduler_type != 'linear':
hparam_name += '_' + training_args.lr_scheduler_type
if training_args.warmup != 0:
hparam_name += '_warmup' + str(training_args.warmup)
if training_args.clip_grad_norm and training_args.clip_grad_norm > 0:
hparam_name += '_clipnorm' + str(training_args.clip_grad_norm)
if training_args.clip_grad_value and training_args.clip_grad_value > 0:
hparam_name += '_clipgrad' + str(training_args.clip_grad_value)
if training_args.clip_loss_value and training_args.clip_loss_value > 0:
hparam_name += '_cliploss' + str(training_args.clip_loss_value)
# assert training_args.clip_grad_value is None or training_args.clip_loss_value is None
# training_args.output_dir = os.path.join('outputs', tag_name, hparam_name)
if training_args.tag == 'debug':
os.environ['WANDB_MODE'] = 'offline'
if training_args.local_rank in [-1, 0]:
wandb_config = copy.deepcopy(asdict(training_args))
wandb_config.update(asdict(model_args))
wandb_config.update(asdict(data_args))
wandb.init(
project="LLaMA-BiFLAN",
# entity='lomo_exp',
name=tag_name if hparam_name == 'output' else '_'.join([tag_name, hparam_name.replace('output_', '')]),
config=wandb_config
)
# ========== 2. Load pretrained model and tokenizer. ==========
ds_config = training_args.deepspeed
dschf = HfDeepSpeedConfig(ds_config)
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
config.gradient_checkpointing = training_args.gradient_checkpointing
config.pad_token_id = 0
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
local_files_only=True,
config=config,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
use_fast=False,
padding_side='left'
)
tokenizer.pad_token = "<unk>"
tokenizer.pad_token_id = 0
# ========== 3. Preprocessing the datasets. ==========
# dataset_info = get_dataset_info(data_args.dataset_name)
# train_dataset = MyDataset(data_args, tokenizer, dataset_info, split=dataset_info.exemplar_split)
# eval_dataset = MyDataset(data_args, tokenizer, dataset_info, split=dataset_info.eval_split)
hydra_cfg = OmegaConf.load(training_args.hydra_config)
train_dataset = hydra.utils.instantiate(hydra_cfg.read_tensor_train,
file_path="wiki_erica_path/v9.1_fixed/distant_path_v9.1_fix_no_shuffle.train.0.pkl",
tokenizer=tokenizer)
data_collator = hydra.utils.instantiate(hydra_cfg.collator)
# ========== 4. Initialize our Trainer. ==========
trainer = LOMOTrainer(
model=model,
training_args=training_args,
# data_collator={'train': DataCollatorForCauselLM(tokenizer, max_length=data_args.data_max_length, padding_side='left'),
# 'eval': EvalDataCollatorForCauselLM(tokenizer, max_length=data_args.data_max_length, padding_side='left')},
# train_dataset=train_dataset,
# eval_dataset=eval_dataset,
data_collator={"train": data_collator, "eval": None},
train_dataset=train_dataset,
eval_dataset=None,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
if training_args.do_train:
trainer.train()
else:
trainer.eval(trainer.global_step, 0, trainer.eval_dataset, trainer.eval_dataloader, 'zero-shot')
if __name__ == "__main__":
train()