generated from SparkJiao/pytorch-transformers-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer_ds_mp_unify_aws.py
349 lines (277 loc) · 14.5 KB
/
trainer_ds_mp_unify_aws.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# coding=utf-8
#
# Copyright 2023 Nanyang Technological University Fangkai Jiao
#
# Part of this code is based on the source code of Transformers
# (arXiv:1910.03771)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
import logging
import os
import sys
from typing import Dict, Union
import deepspeed
import hydra
import torch
import wandb
from deepspeed.pipe import PipelineModule
from omegaconf import DictConfig, OmegaConf
from torch import distributed as dist
from torch.utils.data import (DataLoader, RandomSampler, DistributedSampler)
from tqdm import tqdm, trange
from transformers import (AutoTokenizer, PreTrainedTokenizer)
import models.llama_ds_mp_wrap
from general_util.evaluator import evaluate_fn as evaluate
from general_util.logger import setting_logger
from general_util.training_utils import set_seed, load_and_cache_examples, set_seed_int
logger: logging.Logger
torch.backends.cuda.matmul.allow_tf32 = True
def save_model(model: Union[deepspeed.DeepSpeedEngine, deepspeed.PipelineEngine],
cfg: DictConfig, output_dir: str, tokenizer: PreTrainedTokenizer = None, state_dict: Dict = None):
model.save_checkpoint(output_dir)
if cfg.local_rank not in [-1, 0]:
dist.barrier()
if cfg.local_rank in [-1, 0]:
if tokenizer is not None:
tokenizer.save_pretrained(output_dir)
OmegaConf.save(cfg, os.path.join(output_dir, "training_config.yaml"))
logger.info("Saving model checkpoint to %s", output_dir)
end_dir = output_dir.split("/")[-1]
os.system(f"./s5cmd sync {output_dir}/ {cfg.aws_output_bucket}/{end_dir}/")
if cfg.local_rank == 0:
dist.barrier()
def train(cfg, model, tokenizer, continue_from_global_step=0):
""" Train the model """
if cfg.local_rank in [-1, 0]:
tb_helper = hydra.utils.instantiate(cfg.summary_helper) if "summary_helper" in cfg and cfg.summary_helper else None
else:
tb_helper = None
cfg.train_batch_size = cfg.per_gpu_train_batch_size
dp_degree = dist.get_world_size() // cfg.num_stages
train_dataset = load_and_cache_examples(cfg, tokenizer, _split="train", _file=cfg.train_file)
num_epoch_steps = len(train_dataset) // cfg.train_batch_size // dp_degree
if getattr(cfg, "do_preprocess", False):
return
if "extended_vocab" in cfg and cfg.extended_vocab:
logger.info(f"Extended extra vocab size: {cfg.extended_vocab}")
model.resize_token_embeddings(model.config.vocab_size + cfg.extended_vocab)
if cfg.max_steps > 0:
t_total = cfg.max_steps
cfg.num_train_epochs = cfg.max_steps // (num_epoch_steps // cfg.gradient_accumulation_steps) + 1
else:
t_total = num_epoch_steps // cfg.gradient_accumulation_steps * cfg.num_train_epochs
num_warmup_steps = int(t_total * cfg.warmup_proportion) if cfg.warmup_proportion else cfg.warmup_steps
ds_config = cfg.ds_cfg
if "total_num_steps" in ds_config.scheduler.params:
ds_config.scheduler.params.total_num_steps = t_total
ds_config.scheduler.params.warmup_num_steps = num_warmup_steps
ds_config = OmegaConf.to_container(ds_config, resolve=True)
if torch.__version__ >= "2" and (getattr(os.environ, "TORCH_COMPILE", False) or getattr(cfg, "compile", False)):
model = torch.compile(model, mode="max-autotune")
train_collator = hydra.utils.instantiate(cfg.collator) if "collator" in cfg and cfg.collator else None
model, optimizer, _, scheduler = deepspeed.initialize(model=model,
model_parameters=[p for p in model.parameters() if p.requires_grad],
training_data=train_dataset,
collate_fn=train_collator,
config=ds_config)
model.load_checkpoint(cfg.model_name_or_path, load_module_only=True, load_optimizer_states=False, load_lr_scheduler_states=False)
logger.info(optimizer.optimizer)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", cfg.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", cfg.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
cfg.train_batch_size * cfg.gradient_accumulation_steps * dp_degree)
logger.info(" Gradient Accumulation steps = %d", cfg.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
logger.info(" Warmup steps = %d", num_warmup_steps)
if continue_from_global_step > 0:
logger.info("Fast forwarding to global step %d to resume training from latest checkpoint...", continue_from_global_step)
model.load_checkpoint(cfg.resume)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
# model.zero_grad()
train_iterator = trange(int(cfg.num_train_epochs), desc="Epoch", disable=cfg.local_rank not in [-1, 0])
set_seed(cfg) # Added here for reproducibility (even between python 2 and 3)
if cfg.local_rank in [-1, 0]:
os.system(f"nvidia-smi")
os.system("free -h")
if dist.is_initialized():
dist.barrier()
for epoch in train_iterator:
epoch_update_steps = num_epoch_steps // cfg.gradient_accumulation_steps
for step in tqdm(range(epoch_update_steps), desc="Iteration", disable=cfg.local_rank not in [-1, 0], dynamic_ncols=True):
# If training is continued from a checkpoint, fast forward
# to the state of that checkpoint.
if global_step < continue_from_global_step:
if (step + 1) % cfg.gradient_accumulation_steps == 0:
# scheduler.step() # Update learning rate schedule # Done by `load_checkpoint` of DS.
global_step += 1
continue
model.train()
loss = model.train_batch()
global_step += 1
tr_loss += loss.item()
# Log metrics
log_metrics = {}
if cfg.local_rank in [-1, 0] and cfg.logging_steps > 0 and global_step % cfg.logging_steps == 0:
log_metrics['lr'] = scheduler.get_lr()[0]
log_metrics['loss'] = (tr_loss - logging_loss) / cfg.logging_steps
logging_loss = tr_loss
# Save model checkpoint
if cfg.save_steps > 0 and global_step % cfg.save_steps == 0:
output_dir = os.path.join(cfg.output_dir, 'checkpoint-{}'.format(global_step))
if cfg.local_rank in [-1, 0] and not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
save_model(model, cfg, output_dir, tokenizer)
if len(log_metrics) > 0 and cfg.local_rank in [-1, 0]:
wandb.log(log_metrics)
del log_metrics
if 0 < cfg.max_steps < global_step:
train_iterator.close()
break
if 0 < cfg.max_steps < global_step:
break
return global_step, tr_loss / global_step
@hydra.main(config_path="conf", config_name="config", version_base="1.2")
def main(cfg: DictConfig):
if "LOCAL_RANK" in os.environ and os.environ["LOCAL_RANK"] not in [-1, "-1"]:
cfg.local_rank = int(os.environ["LOCAL_RANK"])
if cfg.local_rank == -1 or cfg.no_cuda:
device = str(torch.device("cuda" if torch.cuda.is_available() and not cfg.no_cuda else "cpu"))
cfg.n_gpu = torch.cuda.device_count()
else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs
torch.cuda.set_device(cfg.local_rank)
device = str(torch.device("cuda", cfg.local_rank))
deepspeed.init_distributed(dist_backend="nccl")
cfg.n_gpu = 1
cfg.world_size = dist.get_world_size()
cfg.device = device
global logger
logger = setting_logger(cfg.output_dir, local_rank=cfg.local_rank)
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
cfg.local_rank, cfg.device, cfg.n_gpu, bool(cfg.local_rank != -1), cfg.fp16)
logger.warning(f"CPU cores: {os.cpu_count()}")
# Set seed
set_seed(cfg)
# deepspeed.runtime.utils.set_random_seed(cfg.seed)
use_barrier = not os.path.exists(cfg.model_name_or_path)
# Load pre-trained model and tokenizer
if use_barrier and cfg.local_rank not in [-1, 0]:
dist.barrier() # Make sure only the first process in distributed training will download model & vocab
if cfg.pretrain:
pretrain_state_dict = torch.load(cfg.pretrain, map_location='cpu')
else:
pretrain_state_dict = None
tokenizer = AutoTokenizer.from_pretrained(cfg.model_name_or_path)
from general_util.tokenization_utils import expand_special_tokenizer
expand_special_tokenizer(tokenizer)
if getattr(cfg, "enable_flash_attention", False):
logger.info("⚡⚡⚡ enable flash attention.")
from models.patching import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
model_or_config = hydra.utils.call(cfg.model, cfg.model_name_or_path)
layers = hydra.utils.call(cfg.get_layers, model_or_config)
from deepspeed.runtime.pipe.topology import PipeModelDataParallelTopology, ProcessTopology
dp_degree = dist.get_world_size() // cfg.num_stages
# topo = PipeModelDataParallelTopology(num_pp=cfg.num_stages, num_mp=1, num_dp=dp_degree)
# topo = ProcessTopology(axes=['data', 'pipe'], dims=[dp_degree, cfg.num_stages])
# print(f"Rank: {dist.get_rank()}, Topo: {topo.get_coord(dist.get_rank())}")
model_pipe = PipelineModule(layers=layers,
num_stages=cfg.num_stages,
# topology=topo,
loss_fn=models.llama_ds_mp_wrap.loss_fn,
# partition_method="uniform",
activation_checkpoint_interval=getattr(cfg, "activation_checkpoint_interval", 0)
)
# logger.warning(model_pipe)
if use_barrier and cfg.local_rank == 0:
dist.barrier() # Make sure only the first process in distributed training will download model & vocab
# logger.info("Training/evaluation parameters %s", OmegaConf.to_yaml(cfg))
if cfg.local_rank in [-1, 0] and cfg.do_train:
if not os.path.exists(cfg.output_dir):
os.makedirs(cfg.output_dir)
OmegaConf.save(cfg, os.path.join(cfg.output_dir, "training_config.yaml"))
wandb.init(
project="LLaMA-BiFLAN",
name=f"{cfg.exp_name}-{dist.get_rank()}",
notes=cfg.exp_notes,
config=OmegaConf.to_container(cfg, resolve=True),
)
wandb.define_metric(cfg.prediction_cfg.metric, summary=("max" if cfg.prediction_cfg.measure > 0 else "min"))
# Training
if cfg.do_train:
continue_from_global_step = 0 # If set to 0, start training from the beginning
if os.path.exists(cfg.output_dir) and getattr(cfg, "resume", None):
checkpoint = cfg.resume
logger.info("Resuming training from the latest checkpoint: %s", checkpoint)
continue_from_global_step = int(checkpoint.split('-')[-1])
global_step, tr_loss = train(cfg, model_pipe, tokenizer, continue_from_global_step)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# Test
results = {}
if cfg.do_eval:
if not cfg.ddp_eval and cfg.local_rank not in [-1, 0]:
return results
checkpoints = [cfg.output_dir]
if cfg.save_best:
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
elif cfg.prediction_cfg.best_checkpoint and os.path.exists(cfg.prediction_cfg.best_checkpoint):
checkpoints = [cfg.prediction_cfg.best_checkpoint]
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
elif cfg.eval_sub_path:
checkpoints = list(sorted(list(set(
os.path.dirname(c) for c in
glob.glob(cfg.output_dir + f"/{cfg.eval_sub_path}/" + "pytorch_model*.bin", recursive=True)
))))
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info(" the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""
split = "dev"
if "model_eval" in cfg:
model = hydra.utils.call(cfg.model_eval, checkpoint)
else:
model = hydra.utils.call(cfg.model, checkpoint)
if cfg.n_gpu == 1:
model.to(cfg.device)
else:
# For model parallel (of mT5)
if getattr(cfg, "get_device_map", None):
model.parallelize(hydra.utils.call(cfg.get_device_map))
else:
model.parallelize()
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
cfg.model_name_or_path = checkpoint
if cfg.test_file:
prefix = f'test' + (f'-{prefix}' if prefix != "" else "")
split = "test"
result = evaluate(cfg, model, tokenizer, prefix=prefix, _split=split)
result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
results.update(result)
return results
if __name__ == "__main__":
os.environ["HYDRA_FULL_ERROR"] = "1"
hydra_formatted_args = []
# convert the cli params added by torch.distributed.launch into Hydra format
for arg in sys.argv:
if arg.startswith("--"):
hydra_formatted_args.append(arg[len("--"):])
else:
hydra_formatted_args.append(arg)
sys.argv = hydra_formatted_args
print(sys.argv)
main()