generated from SparkJiao/pytorch-transformers-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwiki_rel_disc_eval.py
83 lines (71 loc) · 2.88 KB
/
wiki_rel_disc_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import argparse
import json
import torch
from tqdm import tqdm
from data.collators.api.wiki_seq2seq import WikiDatasetUnifyInterface, WikiRelationConsistent
# def main():
# parser = argparse.ArgumentParser()
# parser.add_argument("--data_file", type=str)
# parser.add_argument("--prediction_file", type=str)
# parser.add_argument("--seed", type=int, default=42)
# parser.add_argument("--n_gpu", type=int, default=1)
# args = parser.parse_args()
#
# examples, _ = torch.load(args.data_file)
#
# predictions = json.load(open(args.prediction_file, "r"))
#
# from general_util.training_utils import set_seed
#
# set_seed(args)
#
# dataset = WikiDatasetUnifyInterface(args.data_file, sample_num=len(predictions), balance=False)
#
# normal_data = []
# normal_true = 0
# counterfactual_data = []
# counterfactual_true = 0
# for pred in tqdm(predictions, total=len(predictions)):
# if pred["pred"] == "Yes":
# if "h" in dataset[pred["id"][0]]["example"]: # counterfactual data
# counterfactual_data.append(pred)
# counterfactual_true += 1
# else:
# normal_data.append(pred)
# normal_true += 1
# elif pred["pred"] == "No":
# if "h" in dataset[pred["id"][0]]["example"]:
# counterfactual_data.append(pred)
# else:
# normal_data.append(pred)
#
# print("Normal data: {} / {} = {}".format(normal_true, len(normal_data), normal_true / len(normal_data)))
# print("Counterfactual data: {} / {} = {}".format(counterfactual_true, len(counterfactual_data), counterfactual_true / len(counterfactual_data)))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_file", type=str)
parser.add_argument("--prediction_file", type=str)
args = parser.parse_args()
examples, _ = torch.load(args.data_file)
predictions = json.load(open(args.prediction_file, "r"))
normal_data = []
normal_true = 0
counterfactual_data = []
counterfactual_true = 0
for pred in tqdm(predictions, total=len(predictions)):
if pred["pred"] == "Yes":
if "h" in examples[pred["id"][0]]: # counterfactual data
counterfactual_data.append(pred)
counterfactual_true += 1
else:
normal_data.append(pred)
normal_true += 1
elif pred["pred"] == "No":
if "h" in examples[pred["id"][0]]:
counterfactual_data.append(pred)
else:
normal_data.append(pred)
print("Normal data: {} / {} = {}".format(normal_true, len(normal_data), normal_true / len(normal_data)))
print("Counterfactual data: {} / {} = {}".format(counterfactual_true, len(counterfactual_data), counterfactual_true / len(counterfactual_data)))
if __name__ == '__main__':
main()