generated from SparkJiao/pytorch-transformers-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwiki_rel_disc_eval_base.py
88 lines (79 loc) · 2.33 KB
/
wiki_rel_disc_eval_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import json
import torch
from tqdm import tqdm
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_file", type=str)
parser.add_argument("--prediction_file", type=str)
args = parser.parse_args()
examples, _ = torch.load(args.data_file)
if args.prediction_file.endswith(".json"):
predictions = json.load(open(args.prediction_file, "r"))
elif args.prediction_file.endswith(".jsonl"):
predictions = []
with open(args.prediction_file, "r") as f:
for line in f:
predictions.append(json.loads(line))
else:
raise ValueError("Unknown file format")
pp = 0
pp_corr = 0
pn = 0
pn_corr = 0
np = 0
np_corr = 0
nn = 0
nn_corr = 0
for pred in tqdm(predictions, total=len(predictions)):
index_a, index_b = pred["id"].split("_")
index_a = int(index_a)
index_b = int(index_b)
type_a = "h" in examples[index_a]
type_b = "h" in examples[index_b]
if pred["pred"] == "Yes":
if not type_a and not type_b:
pp += 1
pp_corr += 1
elif type_a and not type_b:
np += 1
np_corr += 1
elif not type_a and type_b:
pn += 1
pn_corr += 1
elif type_a and type_b:
nn += 1
nn_corr += 1
else:
print("*****")
elif pred["pred"] == "No":
if not type_a and not type_b:
pp += 1
elif type_a and not type_b:
np += 1
elif not type_a and type_b:
pn += 1
elif type_a and type_b:
nn += 1
else:
print("*****")
else:
print(pred["pred"])
if pp > 0:
print("pp: {} / {} = {}".format(pp_corr, pp, pp_corr / pp))
else:
print("PP = 0")
if pn > 0:
print("pn: {} / {} = {}".format(pn_corr, pn, pn_corr / pn))
else:
print("PN = 0")
if np > 0:
print("np: {} / {} = {}".format(np_corr, np, np_corr / np))
else:
print("NP = 0")
if nn > 0:
print("nn: {} / {} = {}".format(nn_corr, nn, nn_corr / nn))
else:
print("NN = 0")
if __name__ == '__main__':
main()