-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcallbacks.py
47 lines (39 loc) · 2.2 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
from lightning.pytorch.callbacks import Callback
from lightning.pytorch.utilities.rank_zero import rank_zero_only
import wandb
import os
from pathlib import Path
class WandB_Logger(Callback):
def __init__(self, cfg, wnb):
super().__init__()
self.cfg = cfg
self.wnb = wnb.experiment
self.version = wnb.version
self.switch_flag = False
@rank_zero_only
def on_train_epoch_end(self, trainer, pl_module):
if (pl_module.current_epoch + 1) % self.cfg.save_log_weights_interval == 0:
Path(os.path.join(self.cfg.model_checkpoint_at), self.version).mkdir(parents=True, exist_ok=True)
model_name = f"{os.path.join(self.cfg.model_checkpoint_at, self.version, f'{pl_module.current_epoch}_epoch_{trainer.global_step}_global_step.pth')}"
# if pl_module.current_epoch == 0:
# pl_module.train_benchmark = []
# pl_module.val_benchmark = []
# else:
# pl_module.train_benchmark = sum(pl_module.train_benchmark) / len(pl_module.train_benchmark)
# pl_module.val_benchmark = sum(pl_module.val_benchmark) / len(pl_module.val_benchmark)
model_dict = {
'cfg': self.cfg,
'epoch': pl_module.current_epoch,
'model_state_dict': pl_module.model.propagation_module.state_dict(),
'optimizer_state_dict': pl_module.optimizers().state_dict() if type(pl_module.optimizers())!=list else {},
# 'benchmark': [pl_module.train_benchmark, pl_module.val_benchmark],
'decoder_state_dict': pl_module.model.mask_decoder.state_dict() if self.cfg.model.requires_grad.mask_decoder else {},
}
torch.save(model_dict, model_name)
torch.save(model_dict, f"{os.path.join(self.cfg.model_checkpoint_at, f'{self.cfg.dataset.num_frames * self.cfg.dataset.stage1}.pth')}")
my_model = wandb.Artifact(f"model_{self.version}", type="model")
my_model.add_file(model_name)
self.wnb.log_artifact(my_model)
# pl_module.train_benchmark = []
# pl_module.val_benchmark = []