-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1074.py
44 lines (36 loc) · 1.62 KB
/
1074.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from typing import List
# Name: Number of Submatrices That Sum to Target
# Link: https://leetcode.com/problems/number-of-submatrices-that-sum-to-target/
# Method: Pairwise check for rows, apply nr of subarrays with target on it
# Time: O(n^2\*m)
# Space: O(n\*m)
# Difficulty: Hard
# Note: feel free to do the check on the minimal dimension
class Solution:
def numSubmatrixSumTarget(self, matrix: List[List[int]], target: int) -> int:
rows, cols = len(matrix), len(matrix[0])
prefix_sums = [[0 for _ in range(cols + 1)] for _ in range(rows + 1)]
# Build prefix sum
for r in range(1, rows + 1):
for c in range(1, cols + 1):
matrix_elem = matrix[r - 1][c - 1]
prefix_sums[r][c] = (
prefix_sums[r - 1][c]
+ prefix_sums[r][c - 1]
- prefix_sums[r - 1][c - 1]
+ matrix_elem
)
# For every parir of rows, do the O(m) check for "subarray" sums
target_matrix_count = 0
for r_up in range(1, rows + 1):
for r_down in range(r_up, rows + 1):
matrix_count = 0
sum_now = 0
prev_sums = {0: 1}
for col in range(1, cols + 1):
sum_now = prefix_sums[r_down][col] - prefix_sums[r_up - 1][col]
if sum_now - target in prev_sums:
matrix_count += prev_sums[sum_now - target]
prev_sums[sum_now] = prev_sums.get(sum_now, 0) + 1
target_matrix_count += matrix_count
return target_matrix_count