forked from Kohulan/DECIMER-Image-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidation_run_with_time_analysis.py
158 lines (137 loc) · 5.15 KB
/
validation_run_with_time_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
* This Software is under the MIT License
* Refer to LICENSE or https://opensource.org/licenses/MIT for more information
* Written by ©Kohulan Rajan 2020
"""
import os
import numpy as np
import skimage.io
import cv2
from PIL import Image
import argparse
import time
import warnings
from decimer_segmentation import complete_structure_mask, load_model
from decimer_segmentation.mrcnn import visualize
warnings.filterwarnings("ignore")
def main():
"""
This script takes the path of the input directory and the path of the
output directory and puts the segmented structures with and without
the mask expansion in the output directory.
"""
parser = argparse.ArgumentParser(description="")
# Input Arguments
parser.add_argument(
"--input_dir",
help="Enter the name of the directory with the input images",
required=True,
)
parser.add_argument(
"--output_dir",
help="Enter the name of the directory for the segmented output images",
required=True,
)
args = parser.parse_args()
# Instantiate extractor and load model
model = load_model()
# Apply the model to every image in the input directory,
# save the result, apply the mask expansion and save the result again.
with open(str(args.output_dir) + "/report.txt", "w") as output:
output.write(
"File name\tModel detection time\tExpansion time\tNumber of depictions\n"
)
for file in os.listdir(args.input_dir):
# Apply Mask R CNN model
input_dir = args.input_dir
t0 = time.time()
r = get_masks(input_dir=input_dir, filename=file, model=model)
t1 = time.time()
model_seg = save_segments(
expanded_masks=r["masks"],
input_dir=input_dir,
filename=file,
output_dir=args.output_dir,
mask_expansion=False,
)
print(model_seg)
# Expand masks to surround the complete structure
image = skimage.io.imread(input_dir + "/" + file)
t2 = time.time()
expanded_masks = complete_structure_mask(
image_array=image, mask_array=r["masks"], debug=False
)
t3 = time.time()
final_seg = save_segments(
expanded_masks=expanded_masks,
input_dir=input_dir,
filename=file,
output_dir=args.output_dir,
mask_expansion=True,
)
print(final_seg)
with open(str(args.output_dir) + "./report.txt", "a") as output:
output.write(
str(file)
+ "\t"
+ str(t1 - t0)
+ "\t"
+ str(t3 - t2)
+ "\t"
+ str(r["masks"].shape[2])
+ "\n"
)
def get_masks(input_dir, filename, model):
"""
This function applies the Mask R CNN model on a given input image
and returns the masks of the detected structures
"""
IMAGE_PATH = input_dir + "/" + filename
image = skimage.io.imread(IMAGE_PATH)
# Run detection
results = model.detect([image], verbose=1)
r = results[0]
return r
def save_segments(expanded_masks, input_dir, filename, output_dir, mask_expansion=True):
"""
This function takes the masks, the corresponding image and an output
directory and saves the segmented image of a structure depiction.
The mask_expansion attribute only changes the name of the output file.
"""
IMAGE_PATH = input_dir + "/" + filename
mask = expanded_masks
for i in range(mask.shape[2]):
image = cv2.imread(os.path.join(IMAGE_PATH), -1)
for j in range(image.shape[2]):
image[:, :, j] = image[:, :, j] * mask[:, :, i]
# Remove unwanted background
grayscale = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, thresholded = cv2.threshold(grayscale, 0, 255, cv2.THRESH_OTSU)
bbox = cv2.boundingRect(thresholded)
x, y, w, h = bbox
masked_image = np.zeros(image.shape).astype(np.uint8)
masked_image = visualize.apply_mask(masked_image, mask[:, :, i], [1, 1, 1])
masked_image = Image.fromarray(masked_image)
masked_image = masked_image.convert("RGB")
im_gray = cv2.cvtColor(np.asarray(masked_image), cv2.COLOR_RGB2GRAY)
(_, im_bw) = cv2.threshold(
im_gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU
)
# Removal of transparent layer - black background
_, alpha = cv2.threshold(im_bw, 0, 255, cv2.THRESH_BINARY)
b, g, r = cv2.split(image)
rgba = [b, g, r, alpha]
dst = cv2.merge(rgba, 4)
background = dst[y : y + h, x : x + w]
trans_mask = background[:, :, 3] == 0
background[trans_mask] = [255, 255, 255, 255]
new_img = cv2.cvtColor(background, cv2.COLOR_BGRA2BGR)
# Save segments
if mask_expansion:
output_image = output_dir + filename + "_segment_%d.png" % i
else:
output_image = output_dir + filename + "_segment_NOEXPANSION_%d.png" % i
cv2.imwrite(output_image, new_img)
return "Completed, Segments saved inside the ouput folder!"
if __name__ == "__main__":
main()