-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
335 lines (279 loc) · 10.6 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import json
import os
from collections import Counter
import generate
entities = generate.animal_names + generate.animal_names_1 + generate.people_names
attributes = (
generate.people_attributes_1
+ generate.people_attributes_2
+ generate.people_attributes_3
+ generate.people_attributes_4
+ generate.people_attributes_5
+ generate.people_attributes_6
+ generate.animal_attributes_1
+ generate.animal_attributes_2
+ generate.animal_attributes_3
+ generate.animal_attributes_4
)
relations = generate.animal_relations
def as_percent(numerator, denominator, ndigits=1):
return str(round(numerator / denominator * 100, ndigits)) + "%"
datasets = generate.datasets
models = datasets + [
"Person+Animal-0.1",
"Animal+Person-Simple",
"Untrained",
]
def decompose(line: str):
words = line.replace(".", "").replace("The", "the").split()
subject = relation = attribute = obj = ""
if "is" in words:
subject = " ".join(words[0:-2])
attribute = words[-1]
relation = words[-2]
else:
for relation in relations:
if relation in words:
location = words.index(relation)
subject = " ".join(words[0:location])
obj = " ".join(words[location + 1 :])
attribute = " ".join(words[location:])
break
return subject, relation, attribute, obj
def well_formed(line: str):
try:
subject, relation, attribute, obj = decompose(line)
except IndexError:
return False
if relation == "is":
return subject in entities and attribute in attributes
else:
return subject in entities and obj in entities and relation in relations
def attempt_to_fix(line0: str, line1: str):
subject, relation, attribute, object = decompose(line0)
# Extraneous words - remove
newline = line1.replace(" and", "")
newline = newline.replace(" are", " is")
newline = newline.replace(" a ", " ")
if not " is" in line0 and " is" in newline:
newline = newline.replace(" is", "")
line1 = newline
if line1 == "":
return None
# Looping
words = line1.removesuffix(".").split()
unique_words = set(words)
for word in unique_words:
index = words.index(word)
while word in words:
words.remove(word)
words.insert(index, word)
line1 = generate.sentencify(" ".join(words))
# If removing looping worked, no need to continue
if well_formed(line1):
return line1
# Second kind of looping; sometimes sentences have two 'the's, sometimes not
words = line1.removesuffix(".").lower().split()
unique_words = set(words)
for word in unique_words:
index = words.index(word)
while word in words:
words.remove(word)
words.insert(index, word)
line1 = generate.sentencify(" ".join(words))
# If removing looping worked, no need to continue
if well_formed(line1):
return line1
# Missing "is" - put back in
if relation == "is" and " is " not in line1:
words = line1.split()
words.insert(-1, "is")
reconstructed = " ".join(words)
if well_formed(reconstructed):
return reconstructed
# Somewhat-recognisable alias for correct subject
aliases = {
"Anne": ["The anneagle"],
"Bob": ["The bobster"], # All hail the Bobster
"Erin": ["The eragle", "The etah", "The eagle", "The er", "The ereagle"],
"Fiona": ["The ficon", "The filion", "The fion"],
"Harry": ["The h"],
"the cheetah": ["Che", "Cheona"],
"the crocodile": ["Cro", "Croona"],
"the hamster": ["Ham"],
"the mouse": ["Mickey"], # LOL
"the squirrel": ["S"],
"the tiger": ["T", "Tona"],
}
for subject, alias_list in aliases.items():
for alias in alias_list:
reconstructed = line1.replace(alias, subject)
if well_formed(reconstructed):
return generate.sentencify(reconstructed)
# Missing 'the' - put back
if "the" in line0.lower() and not "the" in line1.lower():
attempt = generate.sentencify("the " + line1.lower())
if well_formed(attempt):
return attempt
# Extra 'the' - remove
if not "the" in line0.lower() and "the" in line1.lower():
attempt = generate.sentencify(line1.lower().replace("the", "").strip())
if well_formed(attempt):
return attempt
def diagnose(line0: str, line1: str):
subject, relation, attribute, obj = decompose(line0)
if well_formed(line1):
subject1, relation1, attribute1, object1 = decompose(line1)
if [subject, relation, attribute, obj] == [
subject1,
relation1,
attribute1,
object1,
]:
return "correct"
if attribute == attribute1:
return "salvageable"
return "incorrect"
fixed = attempt_to_fix(line0, line1)
if fixed:
return "fixable and " + diagnose(line0, fixed)
if attribute in line1:
for other_attribute in attributes:
if other_attribute != attribute and other_attribute in line1:
return "somewhat useful"
return "useful"
if relation != "is":
# Doesn't cover multiple relations or objects
if relation[:-1] in line1 or obj in line1:
return "somewhat useful"
return "useless" # Doesn't cover correct entity
def correct(line0, line1):
return line0 == line1
def fixable(line0, line1):
result = diagnose(line0, line1)
return result == "correct" or result == "fixable and correct"
def useful(line0, line1):
useful_results = [
"correct",
"salvageable",
"fixable and correct",
"fixable and salvageable",
"useful",
]
return diagnose(line0, line1) in useful_results
def classify_answers():
for model in models:
for dataset in datasets:
classes = []
results_file = os.path.join("results", dataset, f"results_{model}.jsonl")
if os.path.exists(results_file):
with open(results_file) as file:
contents = file.readlines()
tuples = [json.loads(line) for line in contents]
for line in tuples:
classes.append(diagnose(line["label"], line["answer"]))
report = Counter(classes)
print(model, "on", dataset + ":", report)
def results_table(num=0):
table = [
["Model \\ Test set"]
+ [dataset.removeprefix("Abduction-") for dataset in datasets]
]
for model in models:
row = [model]
for dataset in datasets:
results_file = os.path.join("results", dataset, f"results_{model}.jsonl")
if os.path.exists(results_file):
with open(results_file) as file:
contents = file.readlines()
answers = [json.loads(line) for line in contents]
results = [criterion(num)(line["label"], line["answer"]) for line in answers]
successes = results.count(True)
failures = results.count(False)
total = successes + failures
string = as_percent(successes, total)
if num != 0:
proper = [
criterion(num - 1)(line["label"], line["answer"]) for line in answers
].count(True)
if proper == successes:
string += " (-)"
else:
string += " (+" + as_percent((successes - proper), total) + ")"
row.append(string)
else:
row.append("")
table.append(row)
return table
def printable_table(rows):
rows = [[str(item) for item in row] for row in rows]
lengths = {}
for row in rows:
for i, item in enumerate(row):
if i in lengths:
lengths[i] = max(lengths[i], len(item))
else:
lengths[i] = len(item)
new_rows = [[item.rjust(lengths[i]) for i, item in enumerate(row)] for row in rows]
printable = "\n".join(["|".join(row) for row in new_rows])
return printable
def latex_table(rows, caption=None, label=None):
"""Given a list of lists, converts into a LATEX table."""
num_cols = max([len(row) for row in rows])
string_list = ["\\begin{adjustbox}{max width=\\textwidth}\n"]
string_list += ["\\begin{tabular}{|", "c|" * num_cols, "}\n\\hline\n"]
for row in rows:
for i in range(num_cols):
if len(row) > i:
if "%" in row[i]:
string_list.append("\\cellcolor{blue!")
string_list.append(str(float(row[i].split("%")[0]) / 2))
string_list.append("}")
if rows[0][i] in row[0].removeprefix("Abduction-").split("+"):
string_list.append("\\textbf{")
string_list.append(str(row[i]))
if "%" in row[i] and rows[0][i] in row[0].removeprefix(
"Abduction-"
).split("+"):
string_list.append("}")
string_list.append("&")
string_list[-1] = "\\\\\n\\hline\n"
string_list.append("\\end{tabular}\n")
string_list.append("\\end{adjustbox}")
if caption != None:
string_list.insert(0, "\\begin{table*}[t]\n")
string_list.append("\n\\caption{")
if label != None:
string_list.append("\\label{tab:")
string_list.append(str(label))
string_list.append("}")
string_list.append(str(caption))
string_list.append("}\n\\end{table*}")
string = "".join(string_list)
string = string.replace("%", "\\%")
string = string.replace(" \\ ", " $\\backslash$ ")
return string
def criterion(level):
return [correct, fixable, useful][level]
def main():
for num in range(3):
category = criterion(num).__name__.capitalize()
caption = "Performance of all models on all test sets"
if num == 1:
caption += " after allowing lossless errors"
if num == 2:
caption += " after allowing lossy errors"
caption += "."
if num > 0:
caption = caption.replace("Performance", "Improvement")
else:
caption += " Test sets corresponding to training sets are bolded."
label = category.lower() + "results"
table = results_table(num)
to_print = printable_table(table)
# to_print = latex_table(table, caption, label)
print(caption)
print(to_print)
print()
if __name__ == "__main__":
main()