-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcomplete_reasoning_Llama2.py
161 lines (136 loc) · 6.66 KB
/
complete_reasoning_Llama2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from transformers import AutoTokenizer
import transformers
import torch
import re
import json
import csv
import templates
import subprocess
model = "meta-llama/Llama-2-7b-chat-hf"
JSON_filename = 'PARARULE_plus_step2_People_sample.json'
PY_filename = 'pyDatalog_processing.py'
def remove_spaces(text):
# Replace multiple spaces with a single space
text = re.sub(r' +', ' ', text)
# Remove leading and trailing spaces from each line
text = re.sub(r'^ +| +$', '', text, flags=re.MULTILINE)
return text
template = {
"Llama2_baseline": remove_spaces("""Based on the closed world assumption, please help me complete a multi-step logical reasoning task (judge true or not). Please help me answer whether the question is correct or not based on the facts and rules formed by these natural language propositions. 、
You should just return me one number as the final answer (1 for true and 0 for wrong) and providing reasoning process simply. The Propositions and Questions are as follows: \n""")
}
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
def extract_string(input_string):
left_boundary = 'import'
right_boundary = ')'
start_index = input_string.find(left_boundary)
end_index = input_string.rfind(right_boundary, start_index)
if start_index != -1 and end_index != -1:
extracted_string = input_string[start_index:end_index + 1]
return extracted_string.strip()
return None
def batch_process(text):
sequences = pipeline(
text,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=2048,
)
return sequences[0]['generated_text']
# List of json file names
json_files = [
"../PARARULE_plus_step2_Animal_sample.json",
"../PARARULE_plus_step3_Animal_sample.json",
"../PARARULE_plus_step4_Animal_sample.json",
"../PARARULE_plus_step5_Animal_sample.json",
"../PARARULE_plus_step2_People_sample.json",
"../PARARULE_plus_step3_People_sample.json",
"../PARARULE_plus_step4_People_sample.json",
"../PARARULE_plus_step5_People_sample.json"
]
with open(JSON_filename, 'r') as file:
data = json.load(file)
# # Open the CSV file for writing
# with open("Llama2-7B-ChatLogic.csv", "w", newline="", encoding="utf-8") as csv_file:
# csv_writer = csv.writer(csv_file)
# csv_writer.writerow(["step", "return", "label"]) # Write header
#
# for json_file in json_files:
# step = '_'.join(json_file.split("_")[2:4])
# with open(json_file, "r", encoding="utf-8") as f:
# data = json.load(f)
# for entry in data:
# context = entry["context"]
# question = entry["question"]
# label = entry["label"]
# # Replace this with your actual function call
# responses = batch_process(f"Instructions: ```{template['Llama2_baseline']}```Propositions: ```{context}```\nQuestion: ```{question}```")
#
# csv_writer.writerow([step, responses, label])
correct_num = 0
for i in range(0, 50):
try:
# first time generate the code from propositions
result_string = extract_string(batch_process(f"""{templates.templates['agent_engineer']}, Here are the propositions: {data[i]['context']} and the Question:{data[i]['question']},
{templates.templates['no_extra_content']}"""))
# print(result_string)
# convert code back 2 propositions
propositions_generated = batch_process(f"""{templates.templates["agent_engineer_neg"]}, and the following is the generated code: {result_string}""")
# Comparison
# zero-shot CoT is here
tag = batch_process(f"""{templates.templates['check_error_part1']}, and the original Propositions:{data[i]['context']}, and Question:{data[i]['question']}, the generated Propositions and Questions: {propositions_generated}""")
tag_final = batch_process(f"""{templates.templates['check_error_part2']}, the following is the analysis processing: {tag}""")
# if it pass the comparison
if "true" in tag_final:
flag = 0
with open(PY_filename, 'w') as file:
file.write("{}".format(result_string))
output = subprocess.check_output(['python', PY_filename], universal_newlines=True)
while (output.strip() != "1" and output.strip() != "0"):
result_string = extract_string(batch_process(f"""{templates.templates['adjustment_agent']}, and here is the generated code: {result_string}, and the error message: {output}"""))
with open(PY_filename, 'w') as file:
file.write("{}".format(result_string))
print("reprocessing...")
output = subprocess.check_output(['python', PY_filename], universal_newlines=True)
print("New output:" + output)
print(type(output))
flag += 1
if (flag == 3):
break
else:
print("enter the regeneration part")
# regenaration
result_string = extract_string(batch_process(f"""{templates.templates['regeneration']},The original propositions are:{data[i]['context']}, and Question:{data[i]['question']}, and the following is the generated code: {result_string}, and the differences: {tag_final}"""))
with open(PY_filename, 'w') as file:
file.write("{}".format(result_string))
output = subprocess.check_output(['python', PY_filename], universal_newlines=True)
flag = 0
while (output.strip() != "1" and output.strip() != "0"):
result_string = extract_string(batch_process(f"""{templates.templates['adjustment_agent']}, and here is the generated code: {result_string}, and the error message: {output}"""))
with open(PY_filename, 'w') as file:
file.write("{}".format(result_string))
print("reprocessing...")
output = subprocess.check_output(['python', PY_filename], universal_newlines=True)
print("New output:" + output)
print(type(output))
flag += 1
if (flag == 3):
break
# check correctness
# if (output.strip() != '1' and output.strip() != '0'):
# correct_num += 1
if int(output.strip()) == data[i]['label']:
correct_num += 1
else:
continue
except Exception as e:
continue
print(correct_num)