-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_script.sh
349 lines (332 loc) · 12.5 KB
/
training_script.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
## Convert the LLaMA-7B to LLaMA-7B huggingface model
python transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir ../../LLaMA/7B \
--model_size 7B \
--output_dir llama_7B_hf
## Convert the LLaMA-13B to LLaMA-13B huggingface model
python transformers/src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir ../../LLaMA/13B \
--model_size 13B \
--output_dir llama_13B_hf
## Fine-tuning the LLaMA-7B and replicate the Alpaca-7B model
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port=2024 train.py \
--model_name_or_path llama_7B_hf/llama-7b \
--data_path ./alpaca_data.json \
--bf16 True \
--output_dir qiming_alpaca \
--num_train_epochs 3 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the LLaMA-13B and replicate the Alpaca-13B model
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2023 train.py \
--model_name_or_path llama_13B_hf \
--data_path ./alpaca_data.json \
--bf16 True \
--output_dir qiming_alpaca_13B \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 1e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the LLaMA-7B using new PeerWise dataset for explanation generator
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2024 train.py \
--model_name_or_path llama_7B_hf/llama-7b \
--data_path ./Paul_new_data/Cardiff_Sydney_merged_generator.json \
--bf16 True \
--output_dir qiming_llama_7B_Cardiff_Sydney_merged_generator \
--model_max_length 1024 \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the LLaMA-13B using new PeerWise dataset for explanation generator
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2024 train.py \
--model_name_or_path llama_13B_hf \
--data_path ./Paul_new_data/Cardiff_Sydney_merged_generator.json \
--bf16 True \
--output_dir qiming_llama_13B_Cardiff_Sydney_merged_generator \
--model_max_length 512 \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 1e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the LLaMA-7B using new PeerWise dataset for explanation verifier way 1
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2024 train.py \
--model_name_or_path llama_7B_hf/llama-7b \
--data_path ./Paul_new_data/Cardiff_Sydney_merged_verifier_way_1.json \
--bf16 True \
--output_dir qiming_llama_7B_Cardiff_Sydney_merged_verifier_way_1 \
--num_train_epochs 3 \
--model_max_length 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the LLaMA-7B using new PeerWise dataset for explanation verifier way 2
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2024 train.py \
--model_name_or_path llama_7B_hf/llama-7b \
--data_path ./Paul_new_data/Cardiff_Sydney_merged_verifier_way_2.json \
--bf16 True \
--output_dir qiming_llama_7B_Cardiff_Sydney_merged_verifier_way_2 \
--num_train_epochs 3 \
--model_max_length 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the Alpaca-7B using new merged PeerWise dataset for explanation generator
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2024 train.py \
--model_name_or_path qiming_alpaca_7B \
--data_path ./Paul_new_data/Cardiff_Sydney_merged_generator.json \
--bf16 True \
--output_dir qiming_alpaca_7B_Cardiff_Sydney_merged_generator \
--model_max_length 1024 \
--num_train_epochs 20 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the Alpaca-7B using Cardiff only PeerWise dataset for explanation generator
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port=2025 train.py \
--model_name_or_path qiming_alpaca_7B \
--data_path ./Paul_new_data/Cardiff_generator_train.json \
--bf16 True \
--output_dir qiming_alpaca_7B_Cardiff_generator \
--model_max_length 1024 \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 5 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the LLaMA-7B using Cardiff only PeerWise dataset for explanation generator
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 --master_port=2025 train.py \
--model_name_or_path llama_7B_hf/llama-7b \
--data_path ./Paul_new_data/Cardiff_generator_train.json \
--bf16 True \
--output_dir LLaMA_7B_Cardiff_generator \
--model_max_length 1024 \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 5 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the LLaMA-13B using Cardiff only PeerWise dataset for explanation generator
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2026 train.py \
--model_name_or_path llama_13B_hf \
--data_path ./Paul_new_data/Cardiff_generator_train.json \
--bf16 True \
--output_dir LLaMA_13B_Cardiff_generator \
--model_max_length 512 \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 5 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the Vicuna-13B using Cardiff only avg >=3 and explanation length >=10 PeerWise dataset for explanation generator
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 --master_port=2026 train.py \
--model_name_or_path vicuna-13b \
--data_path ./Paul_new_data/Cardiff_generator_train_avg_3_lenexp_10.json \
--bf16 True \
--output_dir vicuna_13B_Cardiff_generator_avg_3_lenexp_10 \
--model_max_length 512 \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--gradient_checkpointing True
## Fine-tuning the Vicuna-13B using Sydney all avg >=3 and explanation length >=10 PeerWise dataset for explanation generator
CUDA_VISIBLE_DEVICES=1,2,3,4,5,6,7 torchrun --nproc_per_node=7 --master_port=2026 train.py \
--model_name_or_path vicuna-13b \
--data_path ./Paul_new_data/Sydney_all_generator_train_avg_3_lenexp_10.json \
--bf16 True \
--output_dir vicuna_13B_Sydney_all_generator_avg_3_lenexp_10 \
--model_max_length 512 \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True \
--gradient_checkpointing True
## Fine-tuning the Alpaca-7B using new PeerWise dataset for explanation verifier way 1
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2024 train.py \
--model_name_or_path qiming_alpaca_7B \
--data_path ./Paul_new_data/Cardiff_Sydney_merged_verifier_way_1.json \
--bf16 True \
--output_dir qiming_alpaca_7B_Cardiff_Sydney_merged_verifier_way_1 \
--num_train_epochs 20 \
--model_max_length 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
## Fine-tuning the Alpaca-7B using new PeerWise dataset for explanation verifier way 2
CUDA_VISIBLE_DEVICES=4,5,6,7 torchrun --nproc_per_node=4 --master_port=2024 train.py \
--model_name_or_path qiming_alpaca_7B \
--data_path ./Paul_new_data/Cardiff_Sydney_merged_verifier_way_2.json \
--bf16 True \
--output_dir qiming_alpaca_7B_Cardiff_Sydney_merged_verifier_way_2 \
--num_train_epochs 20 \
--model_max_length 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 2000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True