-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract_gaze_data.py
203 lines (157 loc) · 7.15 KB
/
extract_gaze_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import pandas as pd
from os import scandir, path
from xlsx2csv import Xlsx2csv
from utils import create_output_dir
INPUT_DIR = "data/"
OUTPUT_DIR = "output/gaze_data/"
SOOD_DATASET = "sood_et_al_2020"
SARCASM_DATASET = "Mishra/Eye-tracking_and_SA-II_released_dataset"
GECO_DATASET = "GECO"
ZUCO_DATSET = "ZuCo"
PROVO_DATASET = "Provo"
FRANK_DATASET = "Frank_et_al_2013"
def process_participant_gaze(file):
df = pd.read_csv(file,
sep="\t",
usecols=["Recording name", "Presented Stimulus name", "word_index", "word", "Gaze event duration"],
engine="c",
quoting=3,
low_memory=False)
df["Participant name"] = file.split("/")[-1][:-4]
df = df[(df["word_index"] > -1)].groupby(
["Participant name", "Recording name", "Presented Stimulus name", "word_index", "word"]).sum()[
'Gaze event duration'].reset_index()
return df
def create_gaze_dataset(dataset=None, files=None):
dfs = []
df = None
if dataset == FRANK_DATASET:
df = pd.read_csv("data/Frank_et_al_2013/gaze_duration.csv")
df = df.groupby(["Participant_ID", "Text_ID", "word_index", "Word"]).sum()['Fixation_Duration'].reset_index()
if dataset == SARCASM_DATASET:
df = pd.read_csv("data/Mishra/Eye-tracking_and_SA-II_released_dataset/Fixation_sequence.csv")
df = df[~(df["Word_ID"] == 1)]
df["word_index"] = df["Word_ID"] - 2
df = df.groupby(["Participant_ID", "Text_ID", "word_index", "Word"]).sum()['Fixation_Duration'].reset_index()
if dataset == SOOD_DATASET:
for file in files:
try:
df = process_participant_gaze(file, dataset=dataset)
dfs.append(df)
print(file)
except Exception as e:
print(f"{file}: {e}")
df = pd.concat(dfs).reset_index()
if dataset == ZUCO_DATSET:
df = pd.read_csv(files)
df.loc[df["Fixation_Duration"] < 0, "Fixation_Duration"] = 0
return df
def create_sood_et_al_gaze_data(dataset):
output_path = create_output_dir(dataset, OUTPUT_DIR)
output_file = f"{output_path}/study1_gaze_durations.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
data = "data/sood_et_al_2020/release24_2/study1_data/"
files = [f"{data}{file.name}" for file in scandir(data) if ".tsv" in file.name]
df = create_gaze_dataset(dataset=dataset, files=files)
df.to_csv(output_file, index=False)
print(f"{output_file} done")
output_file = f"{output_path}/study2_gaze_durations.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
data = "data/sood_et_al_2020/release24_2/study2_data/"
files = [f"{data}{file.name}".replace("\\", "/") for file in scandir(data) if ".tsv" in file.name]
df = create_gaze_dataset(dataset=dataset, files=files)
df.to_csv(output_file, index=False)
print(f"{output_file} done")
def create_mishra_sarcasm_gaze_data(dataset):
output_path = create_output_dir(dataset, OUTPUT_DIR)
output_file = f"{output_path}/gaze_durations.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
df = create_gaze_dataset(dataset)
df.to_csv(output_file, index=False)
print(f"{output_file} done")
def create_geco_gaze_data(dataset):
output_path = create_output_dir(dataset, OUTPUT_DIR)
output_file = f"{output_path}/MonolingualReadingData.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
Xlsx2csv("data/GECO/MonolingualReadingData.xlsx", outputencoding="utf-8").convert(output_file, sheetid=1)
print(f"{output_file} done")
output_file = f"{output_path}/L2ReadingData.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
Xlsx2csv("data/GECO/L2ReadingData.xlsx", outputencoding="utf-8").convert(output_file, sheetid=1)
print(f"{output_file} done")
def create_zuco_gaze_data(dataset):
output_path = create_output_dir(dataset, OUTPUT_DIR)
output_file = f"{output_path}/t1_gaze_duration.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
df = create_gaze_dataset(dataset=dataset, files=f"{INPUT_DIR}{dataset}/Task_1/gaze_duration.csv")
df.to_csv(output_file, index=False)
print(f"{output_file} done")
output_file = f"{output_path}/t2_gaze_duration.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
df = create_gaze_dataset(dataset=dataset, files=f"{INPUT_DIR}{dataset}/Task_2/gaze_duration.csv")
df.to_csv(output_file, index=False)
print(f"{output_file} done")
output_file = f"{output_path}/t3_gaze_duration.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
df = create_gaze_dataset(dataset=dataset, files=f"{INPUT_DIR}{dataset}/Task_2/gaze_duration.csv")
df.to_csv(output_file, index=False)
print(f"{output_file} done")
def create_provo_gaze_data(dataset):
output_path = create_output_dir(dataset, OUTPUT_DIR)
output_file = f"{output_path}/gaze_durations.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
df = pd.read_csv(f"{INPUT_DIR}{PROVO_DATASET}/Provo_Corpus-Eyetracking_Data.csv",
encoding='cp1252',
usecols=["Participant_ID", "Text_ID", "Word_Unique_ID", "Word_Cleaned", "IA_DWELL_TIME"])
df = df.dropna()
df.columns = ["Participant_ID", "word_index", "Text_ID", "Word", "Fixation_Duration"]
df.to_csv(output_file, index=False)
print(f"{output_file} done")
def create_frank_gaze_data(dataset):
output_path = create_output_dir(dataset, OUTPUT_DIR)
output_file = f"{output_path}/gaze_durations.csv"
if path.isfile(output_file):
print(f"{output_file} already exists - skipping creation")
else:
df = create_gaze_dataset(dataset)
df.to_csv(output_file, index=False)
print(f"{output_file} done")
def method_chooser(dataset):
if dataset == SOOD_DATASET:
create_sood_et_al_gaze_data(dataset)
elif dataset == SARCASM_DATASET:
create_mishra_sarcasm_gaze_data(dataset)
elif dataset == GECO_DATASET:
create_geco_gaze_data(dataset)
elif dataset == ZUCO_DATSET:
create_zuco_gaze_data(dataset)
elif dataset == PROVO_DATASET:
create_provo_gaze_data(dataset)
elif dataset == FRANK_DATASET:
create_frank_gaze_data(dataset)
def main():
for dataset in [SOOD_DATASET, SARCASM_DATASET, GECO_DATASET, ZUCO_DATSET, PROVO_DATASET, FRANK_DATASET]:
if not path.isdir(path.join(INPUT_DIR, dataset)):
print(f"Cannot find {dataset} - skipping creation")
else:
method_chooser(dataset)
if __name__ == "__main__":
main()