-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfigures_for_manuscript.Rmd
583 lines (449 loc) · 23.3 KB
/
figures_for_manuscript.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
---
title: "Lake Geneva"
output: html_notebook
---
This markdown replicates analyses in "PNAS_SI_notebook.Rmd" to produce manicured figures for the final paper. All figures use ggplot and gridExtra.
Notes on formatting from https://www.pnas.org/content/pnas/111/1/local/information-for-authors.pdf:
Images must be final size, preferably one column width (8.7 cm). Figures wider than one column should be sized to 11.4 cm or 17.8 cm wide. Numbers, letters, and symbols should be no smaller than 6 points (2 mm) and no larger than 12 points (6 mm) after reduc-tion and must be consistent. Composite figures must be preas-sembled. Figures must be submitted as separate files, not embed-ded in manuscript text. See the Digital Art Guidelines or contact [email protected].
```{r packages}
library(tidyverse)
library(lubridate)
library(rEDM,lib.loc = "./lib")
library(ggplot2)
library(grid)
library(gridExtra)
library(ggsci)
source('./FUNCTIONS/F_data_and_plots.R')
```
```{r}
data_file <- "./INPUTS/EDM_input_data.Rdata"
load(data_file)
```
## Figure 1 Data & Causes
The current modeling paradigm incorporates phosphorous changes only indirectly, as integrated into the historical chlorophyll time series. This is only sufficient if there is no complex relationship between phosphorous and chlorophyll!
CCM and 1-step ahead multivariate forecasting confirm the fundamental role that phosphorous plays in the system, both to chlorophyll and deep oxygen. Importantly, the effect of phosphorous cannot be accounted for simply by including chlorophyll.
Ingredients:
(A) Time series of dissolved oxygen at depth.
(B) Time series of total phosphorous.
(C) Time series of chlorophyll-a.
(D) Multivariate EDM analysis demonstrates the importance of explicitly accounting for phosphorous to understanding dissolved oxygen dynamics. Note that simply including indirect information about phosphorous via chlorophyll or primary production is not sufficient to explain behavior (magenta line).
```{r Fig_1_ABC time series}
variables_to_plot <- list("oxydeep","Ptotal_lake","chl")
dates_deep_mixing <-ymd( c("1972-01-22",
"1981-02-15",
"1984-03-13",
"1986-04-18",
"1999-02-01", # point before original point given by damien
# "1999-03-07", # original point given by damien, but is a local minimum
"2005-03-07",
"2006-03-31",
"2012-02-01") )
DO_limits <- c(0,12.5)
df_mixing_arrows <- data.frame(x=dates_deep_mixing,
xend=dates_deep_mixing,
y_DO=12,
y_DOend=11)
# Panel A: DO_b50m with deep mixing
g_1_A <- data_lake_geneva %>%
ggplot(aes(x=date,y=oxydeep)) + geom_line(color=L_colors['oxydeep']) +
geom_segment(mapping = aes(x=x,xend=xend,y=y_DO,yend=y_DOend),
data = df_mixing_arrows,
arrow = arrow(length=unit(3,"points"))) +
labs(y=L_dict_plotting_long['oxydeep'],x="") + theme_bw() +
theme(axis.title.x = element_text(size=9),axis.title.y = element_text(size=9))
# Panel B: Ptot_lake
g_1_B <- data_lake_geneva %>%
ggplot(aes(x=date,y=Ptot_lake)) + geom_line(aes(color="Ptot_lake")) +
geom_line(aes(y=Ptot_epi,color="Ptot_epi")) +
scale_color_manual(values=c(L_colors['Ptot_lake'],L_colors['Ptot_epi']),
labels=c("Ptot_lake"="Lake Avg","Ptot_epi"="Epilimnion")) +
labs(y=L_dict_plotting_long['Ptot_both'],x="",color=NULL) +
theme_bw() +
theme(legend.position = c(.95,.95),
legend.margin = margin(0.01,0.05,0.01,0.05,"cm"),
legend.spacing.x = unit(0.01,"cm"),
legend.justification = c(1,1),
legend.background = element_rect(color = "black")) +
theme(axis.title.x = element_text(size=9),axis.title.y = element_text(size=9))
# Panel C: chl
g_1_C <- data_lake_geneva %>%
ggplot(aes(x=date,y=sqrt(chl))) + geom_line(color=L_colors['chl']) +
geom_line(data = {data_lake_geneva %>%
mutate(chl_mean = stats::filter(chl,rep(1,12)/12,method="convolution"))},
aes(y=sqrt(chl_mean)),color='grey20',lty="dotted") +
labs(y=L_dict_plotting_long['chl'],x="Year") + theme_bw() +
theme(axis.title.x = element_text(size=9),axis.title.y = element_text(size=9))
g_1_ABC <- grid.arrange(g_1_A,g_1_B,g_1_C,ncol=1,bottom="Year")
```
### Figure 1 D
Lines:
- Physics first
- Physics + chlorophyll
- Physics + chlorophyll + PO4_epi
- Physics + chlorophyll + PO4_lake
- Physics + chlorophyll + PO4_epi + PO4_lake
```{r Fig_1_D }
E_fig1_D <- new.env()
load("./Figures/RESULTS_figure_1D.Rdata",E_fig1_D)
f_q_exp <- function(breaks) { parse(text=breaks)}
label_list <- map(unique(RESULTS_figure_1D$embedding),~ bquote(.))
g_1_D <- with(E_fig1_D,{ RESULTS_figure_1D %>%
mutate(embedding = factor(embedding,
levels = unique(embedding)[rank(str_count( unique(embedding),","),ties.method = 'first')])) %>%
# mutate(embedding=as.expression(embedding)) %>%
ggplot(aes(x=theta,y=rho,color=embedding)) + geom_line(lwd=1) +
scale_color_viridis_d(labels= f_q_exp) +
# scale_color_viridis_d()+
labs(x='Nonlinearity (\u03B8)',y='Forecast Skill (\u03C1)',color=NULL) + theme_bw() + theme(legend.position = "bottom",legend.text=element_text(size=7,hjust=0)) + guides(color=guide_legend(nrow=5,byrow=TRUE))
})
# print(g_1_D)
```
```{r}
cairo_pdf(file = "./Figures/Figure_1 - Overview.pdf",width=7,height = 5)
grid.arrange(g_1_A + theme(plot.margin = unit(c(.1,.2,.1,.1),"in")),
g_1_B + theme(plot.margin = unit(c(.1,.2,.1,.1),"in")),
g_1_C + theme(plot.margin = unit(c(.1,.2,.1,.1),"in")),
g_1_D + theme(plot.margin = unit(c(.1,.1,.25,.1),"in")),
layout_matrix=rbind( matrix(c(1,1,1,4,4),nrow=1,ncol=5),
matrix(c(2,2,2,4,4),nrow=1,ncol=5),
matrix(c(3,3,3,4,4),nrow=1,ncol=5) )
)
dev.off()
```
## Figure 2 State-dependent Interactions
Further EDM analysis to investigate the relationship between chlorophyll and phosphorous and identifying a strongly state-dependent relationship.
Figure 2a. dCHL/dTP = f(TP)
Figure 2b. dDO/dCHL = f(TP) ( I would change the sign for DO as people usually look at a depletion rate)
With validated EDM models we can look at the evolving strength of influence of the driving variables by calculating S-map coefficients (Sugihara 1994, Deyle et al. 2016).
```{r}
E_fig2_A <- new.env(parent=E_fig2)
E_fig2_B <- new.env(parent=E_fig2)
load("./Figures/RESULTS_figure_2A.Rdata",env=E_fig2_A)
g_2_A <- with(E_fig2_A, {
bind_cols(block_chl_mEDM_raw,out_s_map_coeff) %>%
# bind_cols(lake_geneva_interp[,c('date',union(L_model_i,sim_col))],out_s_map_coeff) %>%
mutate(year = year(date)) %>%
group_by(year) %>%
summarise_at(vars(starts_with("c_"),PO4_lake),funs(mean,median)) %>%
ggplot(aes(x=PO4_lake_median,y=c_PO4_lake_median)) + geom_point() +
geom_hline(yintercept = 0,lty=2,color="tomato") +
stat_smooth() +
labs(title="Median Annual Effect\nof TP on Chl",x="TP (\u03BCg/L)",y="\u2202 Chl / \u2202 TP") +
theme_bw()
})
load("./Figures/RESULTS_figure_2B.Rdata",env=E_fig2_B)
g_2_B <- with(E_fig2_B,{
bind_cols(lake_geneva_interp,out_s_map_coeff) %>%
filter(month(date) %in% 5:10) %>%
# bind_cols(lake_geneva_interp[,c('date',union(L_model_i,sim_col))],out_s_map_coeff) %>%
mutate(year = year(date)) %>%
group_by(year) %>%
summarise_at(vars(starts_with("c_"),PO4_lake),funs(mean,median)) %>%
ggplot(aes(x=PO4_lake_median,y=c_chl_median)) + geom_point() +
geom_hline(yintercept = 0,lty=2,color="tomato") +
stat_smooth() +
labs(title = "Median May-Oct Effect\nof Chl on Bottom DO",x="TP (\u03BCg/L)",y="\u2202 DO / \u2202 Chl") +
theme_bw()
})
cairo_pdf(file = "./Figures/Figure_2 - State dependent effects.pdf",width=3.4252)
grid.arrange(g_2_A,g_2_B,nrow=2)
dev.off()
```
## Figure 3
"We first explore how DOdeep evolves over 6 months after deep mixing events (Figure 3a) under different reoligotrophication (e.g. change in TP to a given concentration) and climate change (e.g. increase in air temperature). Results from EDM experiments show high depletion rate for high background TP and warmer background air temperature."
"We can already draw important management conclusion (Figure 3b). For instance we can estimate the time it takes for DOdeep to reach 4 mg/L (by law target for Swiss lakes) after a deep mixing event by merging all scenario."
Label as "oxygen depletion". Make sure that units are mg/L/day. (Use "-" of S-map coeff; check that we have converted back to raw units; may need to divide by 180).
```{r}
E_fig3 <- new.env()
load("./Figures/RESULTS_figure_3.Rdata",envir=E_fig3)
C_convert <- as.numeric( mean(diff(data_lake_geneva$date))*E_fig3$tp_max ) # convert to mg/L/day
dict_fig_3 <- as_labeller(
c("4.5"="No Mixing\nDO(May) = 4.5 mg/L",
"6"="Partial Mixing\nDO(May) = 6.0 mg/L",
"7.5"="Full Mixing\nDO(May) = 7.5 mg/L")
)
g_3_A <- with(E_fig3,
{
results_oxydeep_scen_exp %>% filter(oxydeep_0 != 3) %>%
# results_oxydeep_scen_exp %>% filter(oxydeep_0 == 4.5) %>%
mutate(T_scenario = as.factor(T_scenario)) %>%
mutate(T_scenario = paste0("+",T_scenario)) %>%
mutate(delta_oxydeep= delta_oxydeep / C_convert) %>%
ggplot(aes(color=as.factor(T_scenario),y=delta_oxydeep,x=PO4_scenario)) +
geom_point(alpha=.3,shape = "+") + stat_smooth(method = 'loess',span=0.4) +
# geom_point(alpha=.3,shape = "+") + stat_smooth(method = 'gam') +
xlim(c(15,60)) +
theme_bw() +
facet_wrap(~oxydeep_0,labeller = dict_fig_3) +
# facet_wrap(~oxydeep_0) +
# theme(strip.background = element_blank(),
# # strip.text = "May DOdeep (mg/L)",
# strip.placement = "outside") +
labs(color="Air Temperature\nScenario (ºC)",
x="TP Scenario (\u03BCg/L)",
y="Rate of Oxygen Change (mg/L/day)")
})
print(g_3_A)
cairo_pdf(file = "./Figures/Figure_3A - Summer Oxygen Depletion.pdf",width=7,height = 5)
tg_title <- textGrob("Seasonally stratified deep oxygen depletion", gp=gpar(fontsize=20))
tg_facetaxis <- textGrob("May DOdeep (mg/L)", gp=gpar(fontsize=15)) #, fontface=3L))
margin <- unit(0.5, "line")
grid.newpage()
grid.arrange(tg_title, tg_facetaxis, g_3_A,
heights = unit.c(grobHeight(tg_title) + 1.2*margin,
grobHeight(tg_facetaxis) + margin,
unit(1,"null")))
dev.off()
```
## Figure 4
Hybrid model predictions of (A) historical conditions, (B) TP x Tair scenarios of nutrients and temperature.
```{r READ hybrid outputs of historical conditions}
E_fig4$df_Robert <- read_delim('./outputs/Robert_model_final_results_may2020.csv',delim=',',comment="#") %>%
set_names(nm=c("year","month","day","oxydeep")) %>% mutate(data="Parametric")
E_fig4$df_obs <- read_delim('./outputs/observations_final_results_may2020.csv',delim=',',comment="#") %>%
set_names(nm=c("year","month","day","oxydeep")) %>% mutate(data="Observed")
E_fig4$df_hybrid <- temp %>% mutate(year = year(time),month = month(time), day = day(time)) %>% select(year,month,day,oxydeep) %>% mutate(data="Hybrid")
E_fig4$df_plot <- bind_rows(E_fig4$df_Robert,E_fig4$df_obs,E_fig4$df_hybrid) %>%
mutate(data=factor(data,levels=c("Observed","Parametric","Hybrid"))) %>%
mutate(date = ymd(paste(year,month,day,sep="-")))
E_fig4$date_limits <- range(E_fig4$df_plot %>% filter(data=="Observed") %>% pull(date))
E_fig4$data_types <- unique(E_fig4$df_plot$data) %>% as.character()
g_4_A <- with(E_fig4,
df_plot %>%
pivot_wider(names_from=data,values_from=oxydeep) %>%
filter(complete.cases(.)) %>%
pivot_longer(cols=any_of(data_types),names_to="data",values_to="oxydeep") %>%
ggplot(aes(x=date,y=oxydeep,color=data)) + geom_line() +
xlim(date_limits) +
theme_bw() +
labs(x="Date",y="DO (mg/L)",color=NULL)
)
print(g_4_A)
df_4a <- with(E_fig4,
df_plot %>%
pivot_wider(names_from=data,values_from=oxydeep) %>%
filter(complete.cases(.)) )
cor(df_4a$Observed,df_4a$Hybrid)
cor(df_4a$Observed,df_4a$Parametric)
mean(abs(df_4a$Observed-df_4a$Hybrid))
# cairo_pdf(file = "./Figures/Figure_4A - historical prediction.pdf",width=6.5,height = 3.5)
# print(g_4_A)
# dev.off()
```
```{r READ hybrid outputs of 3x3 scenarios}
temp <- read_delim('./output/results_parametric_model.csv',delim=';')
```
```{r}
df_hybrid <- read.csv("./output/hybrid_model_dec2019.csv",sep=";",comment.char = "",check.names = F) %>%
mutate(date = ymd(paste(yyyy,mm,dd,sep="-"))) %>%
select(date,starts_with("DO"))
name_df_hybrid <- names(df_hybrid)[2]
names(df_hybrid)[2] <- "oxydeep"
df_hybrid <- df_hybrid %>%
mutate(type="Predicted") %>%
mutate(oxydeep=lead(oxydeep,1))
df_plot_A <- bind_rows(
data_lake_geneva %>%
select(date,oxydeep) %>%
filter(complete.cases(.)) %>%
mutate(type="Observed"),
df_hybrid
)
panel_A <- df_plot_A %>%
ggplot(aes(x=date,y=oxydeep,color=type)) +
geom_line() +
theme_bw() +
labs(x="Date",y="DO (mg/L)",color=NULL) +
xlim(min(df_hybrid$date),max(df_hybrid$date)) +
scale_color_manual(values=c("Predicted"="red1","Observed"="blue1")) +
theme(legend.position = c(.95,.05),legend.justification = c(1,0))
nearest_date <- function(date_i,dates_to_match){
i <- which.min(abs(date_i-dates_to_match))[1]
# i <- which.min(date_i-dates_to_match)[1]
dates_to_match[i]
}
df_plot_B <- left_join(
df_plot_A %>%
select(date,oxydeep) %>%
filter(complete.cases(.)) %>%
rename(Observed=oxydeep),
df_hybrid %>%
rowwise() %>%
mutate(date = nearest_date(date,data_lake_geneva$date)) %>%
rename(Predicted=oxydeep)
)
df_plot_B %>%
ggplot(aes(x=Observed,y=Predicted)) +
geom_point() +
stat_smooth(method = "lm")+
geom_abline(aes(slope=1,intercept=0),lty=2,color="grey60") +
theme_bw() +
labs(x="Observed DO (mg/L)",y="Predicted DO (mg/L)") +
coord_equal()
# xlim(min(df_hybrid$date),max(df_hybrid$date)) +
# scale_color_manual(values=c("Predicted"="red1","Observed"="blue1")) +
# theme(legend.position = c(.95,.05),legend.justification = c(1,0))
df_plot_B %>%
filter(complete.cases(.)) %>%
ggplot(aes(x=date)) +
geom_line(aes(y=Observed,color="Observed")) +
geom_line(aes(y=Predicted,color="Predicted")) +
theme_bw() +
labs(x="Date",y="DO (mg/L)")
```
## Table S1:
```{r}
E_table_S1 <- new.env()
load("./OUTPUTS/outputs_CCM.Rdata",envir=E_table_S1)
```
```{r CREATE Table S1}
df_dict_CCM <- bind_rows(df_dict_plotting,data.frame(data_file="h_mix_model",plotting_long="",plotting_short="h_mix MODEL"))
t_S1A <- E_table_S1$out.CCM_DO_delta %>%
filter(target_column!="oxydeep") %>%
filter(target_column %in% pull(df_dict_CCM,data_file)) %>%
left_join(df_dict_CCM,by=c("target_column"="data_file")) %>%
# select(target_column,tp,rho,mae,rmse) %>%
select(plotting_short,num_pred,rho) %>%
mutate(rho=signif(rho,digits=3)) %>%
arrange(-rho) %>%
rename(Driver=plotting_short,`Cross-map skill ()`=rho)
t_S1B <- E_table_S1$out.CCM_DO_raw %>%
filter(target_column!="oxydeep") %>%
filter(target_column %in% pull(df_dict_CCM,data_file)) %>%
left_join(df_dict_CCM,by=c("target_column"="data_file")) %>%
# select(target_column,tp,rho,mae,rmse) %>%
select(plotting_short,num_pred,rho) %>%
mutate(rho=signif(rho,digits=3)) %>%
arrange(-rho) %>%
rename(Driver=plotting_short,`Cross-map skill ()`=rho)
```
## Figure S1 Food Web Changes
This figure is an illustration and hence has no corresponding code.
## Figure S2 Remaining Time Series Variables
Plot all the rest of the time series for the supplement.
```{r Fig_SI_1 TSs}
variables_in_main_plot <- list("oxydeep","Ptotal_lake","chl")
data_lake_geneva_long <- data_lake_geneva %>%
gather(key="name",value="value", -date) %>%
mutate(type=ifelse(str_sub(name,-5,-1) == "model","model","obsv")) %>%
mutate(name = str_replace(name,"_model",""))
variables_to_supplement <- setdiff(
intersect(unique(data_lake_geneva_long$name),
names(L_dict_plotting_long)),
c('date',variables_in_main_plot)
)
gs_S1 <- map(variables_to_supplement, function(var_i) {
units <- str_extract(L_dict_plotting_long[var_i],"\\(.+")
lab_short <- paste(L_dict_plotting_short[var_i],units)
lab_i <- L_dict_plotting_long[var_i]
data_lake_geneva_long %>%
filter(type=="obsv") %>%
filter(name==var_i) %>%
ggplot(aes(x=date,y=value)) + geom_line(color='black') +
# geom_line(data = {data_lake_geneva %>%
# mutate(chl_mean = stats::filter(chl,rep(1,12)/12,method="convolution"))},
# aes(y=sqrt(chl_mean)),color='grey20',lty=2) +
labs(y=lab_short,x="") + theme_bw()
}
)
do.call(grid.arrange,c(gs_S1,list(ncol=2)))
cairo_pdf(file = "./Figures/Figure_S1 - Other Variable Time Series.pdf",width=6.5,height = 7)
# do.call(grid.arrange,c(gs_S1,list(ncol=2)))
cowplot::plot_grid(plotlist=map(gs_S1,ggplotGrob),ncol = 2,align = "v")
dev.off()
```
## Figure S3 Identifying Mechanistic Embeddings for Chl and TP_surf
Figure S5 provides the underpinning EDM analysis for main text Figure 2. We analyzed CCM relationships between chl-a and other study variables to narrow a list of candidates. Variables with lower CCM than another highly correlated candidate were discarded. Notably, the SIMSTRAT model imputed Surface Temperature (T_surf) and Thermocline Depth (Z_thermo) both showed a strong causal relationship to Chlorophyll than the station measurements. We then used a greedy search algorithm with this narrowed list to fill out an embedding with the target drivers, nutrient loading (PO4_lake) and temperature (T_surf_model). Optimal predictions are made with only one additional variable, Year_sine, which is the simple Fourier mode that tracks solar insolation. Importantly, this 3-dimensional nonlinear empirical model out-performs univariate EMD predictions of chlorophyll as well as just predicting with the monthly mean.
```{r IMPORT for Fig S3}
E_fig_S3 <- new.env()
E_figS3_chl <- new.env()
E_figS3_po4 <- new.env()
load("./OUTPUTS/outputs_CCM.Rdata",envir=E_fig_S3)
load('./OUTPUTS/mEDM_chl_baselines.Rdata',env=E_figS3_chl)
load("./OUTPUTS/mEDM_chl_greedy.Rdata",env=E_figS3_chl)
load('./OUTPUTS/mEDM_PO4_epi_baselines.Rdata',envir = E_figS3_po4) # results_univar,results_mEDM_multiview_fullfit,results_mEDM_multiview_nfold
load('./OUTPUTS/mEDM_PO4_epi_greedy.Rdata',envir = E_figS3_po4) # results_mEDM_greedy
```
```{r}
g_S4_A_plot <- with(E_figS3_chl,
results_mEDM_greedy %>%
mutate(embedding_label = str_replace_all(embedding_label,pattern=dictionary_extended_to_expressions %>% unlist())) %>%
mutate(embedding_label = make_label_parsable(embedding_label)) %>%
mutate(embedding_label = str_replace_all(embedding_label,"_model","")) %>%
# mutate(embedding_label = str_replace_all(embedding_label,"year_sine","sin(\u03BD)")) %>%
ggplot(aes(x=theta,y=rho,color=embedding_label)) +
geom_line(lwd=1.3) +
geom_line(data=results_univar,aes(color="Univariate"),lwd=1) +
geom_line(data=results_mEDM_seasonal,aes(color="Seasonal"),lwd=1) +
geom_hline(aes(yintercept=results_mEDM_multiview_fullfit$rho,color="Multiview"),lwd=1) +
# scale_color_viridis_d(labels= f_q_exp)
scale_color_jco(labels = f_q_exp) +
theme_bw() + labs(x='Nonlinearity (\u03B8)',y='Forecast Skill (\u03C1)',color=NULL)
)
t_S4_A <- E_fig_S3$out.CCM_chl %>%
filter(target_column!="chl") %>%
filter(!(target_column %in% c("chl","PE","T_bot","T_delta","T_diff_model"))) %>%
select(target_column,tp,rho) %>%
mutate(rho=signif(rho,digits=4)) %>%
mutate(target_column = str_replace_all(target_column,set_names(x=names(dictionary_expressions),nm=dictionary_expressions))) %>%
mutate(target_column = str_replace(target_column,"_model","~ (SIMStrat)")) %>%
rename(optimal_tp=tp) %>%
arrange(-rho)
L_candidate_variables <- c('year_sine','chl','rhone','h_mix_model','PO4_epi')
v_which_important <- `%in%`(t_S4_A$target_column,c('PO4_lake','T_surf_model',L_candidate_variables))
ttheme_S2A <- ttheme_default(
base_size=9,
padding = unit(c(1,1),"mm"),
core=list(
fg_params=list(fontface= ifelse(v_which_important,"bold.italic","plain") )
),
parse = TRUE)
g_S4_A_table <- tableGrob(t_S4_A, theme = ttheme_S2A)
g_S4_B_plot <- with(E_figS3_po4,
results_mEDM_greedy %>%
mutate(embedding_label = str_replace_all(embedding_label,pattern=dictionary_extended_to_expressions %>% unlist())) %>%
mutate(embedding_label = make_label_parsable(embedding_label)) %>%
mutate(embedding_label = str_replace_all(embedding_label,"_model","")) %>%
ggplot(aes(x=theta,y=rho,color=embedding_label)) +
geom_line(lwd=1.3) +
geom_line(data=results_univar,aes(color="Univariate"),lwd=1) +
geom_blank(data=NULL,aes(color="Seasonal")) + # The seasonal model does very poorly, thus we insert a filler to avoid distorting the plot area but maintain the legend color labelling from panel A.
geom_hline(aes(yintercept=results_mEDM_multiview_fullfit$rho,color="Multiview"),lwd=1) +
scale_color_jco(labels = f_q_exp) +
theme_bw() + labs(x='Nonlinearity (\u03B8)',y='Forecast Skill (\u03C1)',color=NULL)
)
t_S4_B <- E_fig_S3$out.CCM_po4 %>%
filter(!(target_column %in% c("PO4_epi","PE","T_bot","T_delta","T_diff_model"))) %>%
select(target_column,tp,rho) %>%
mutate(rho=signif(rho,digits=4)) %>%
mutate(target_column = str_replace_all(target_column,set_names(x=names(dictionary_expressions),nm=dictionary_expressions))) %>%
mutate(target_column = str_replace(target_column,"_model","~ (SIMStrat)")) %>%
rename(optimal_tp=tp) %>%
arrange(-rho)
L_candidate_variables <- c('year_sine','chl','rhone','h_mix_model','PO4_epi')
v_which_important <- `%in%`(t_S4_B$target_column,c('PO4_lake','T_surf_model',L_candidate_variables))
ttheme_S2B <- ttheme_default(
base_size=9,
padding = unit(c(1,1),"mm"),
core=list(
fg_params=list(fontface= ifelse(v_which_important,"bold.italic","plain") )
),
parse = TRUE)
g_S4_B_table <- tableGrob(t_S4_A, theme = ttheme_S2A)
```
Put it all together
```{r}
g_S4_A <- arrangeGrob(g_S4_A_table,
g_S4_A_plot + theme(legend.position = "bottom") + guides(color=guide_legend(ncol=1,title=NULL)),
nrow=1,top = "Chlorophyll")
g_S4_B <- arrangeGrob(g_S4_B_table,
g_S4_B_plot + theme(legend.position = "bottom") + guides(color=guide_legend(ncol=1,title=NULL)),
nrow=1,top = "TP (Surface)")
cairo_pdf(file = "./Figures/Figure_S3 - mechanistic embeddings.pdf",width=6,height=7)
grid.arrange(
g_S4_A,
g_S4_B,
nrow=2
)
dev.off()
```