-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStep_3_Character Segmentation.py
71 lines (53 loc) · 2.28 KB
/
Step_3_Character Segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import cv2
import numpy as np
import os # Import os to create the directory if it doesn't exist
# Load the image
image = cv2.imread('./Step_2_Extraction_Result/Binary Character_5.jpg') # Replace with your image file
# Create a directory for saving intermediate images
output_directory = "Step_3_CharacterSegmentation_Result"
os.makedirs(output_directory, exist_ok=True)
# Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imwrite(os.path.join(output_directory, '1_gray.jpg'), gray)
# Apply Gaussian blur to reduce noise
blur = cv2.GaussianBlur(gray, (3, 3), 0)
cv2.imwrite(os.path.join(output_directory, '2_blur.jpg'), blur)
# Apply Canny edge detection
canny = cv2.Canny(blur, 120, 255, 1)
cv2.imwrite(os.path.join(output_directory, '3_canny.jpg'), canny)
# Find contours in the canny edge-detected image
contours, _ = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Create a copy of the original image to draw contours on
result_image = image.copy()
# Create lists to store words and characters
words = []
characters = []
# Set a minimum area threshold for character segmentation
min_char_area = 100
# Loop through the detected contours
for contour in contours:
# Calculate the area of the contour
area = cv2.contourArea(contour)
# Filter out small noise contours
if area > min_char_area:
x, y, w, h = cv2.boundingRect(contour)
# Draw a bounding box around the character or word
cv2.rectangle(result_image, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Extract the region of interest (ROI) for the character or word
roi = gray[y:y + h, x:x + w]
# Determine if it's a character or word based on size
if w > 2 * h:
words.append(roi)
else:
characters.append(roi)
# Display the result image with contours
cv2.imshow('Result Image', result_image)
cv2.waitKey(0)
# Save the result image with contours
cv2.imwrite(os.path.join(output_directory, '4_result_with_contours.jpg'), result_image)
cv2.destroyAllWindows()
# Save segmented characters and words
for i, word in enumerate(words):
cv2.imwrite(os.path.join(output_directory, f'word_{i}.png'), word)
for i, char in enumerate(characters):
cv2.imwrite(os.path.join(output_directory, f'char_{i}.png'), char)