-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
67 lines (56 loc) · 2.73 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import argparse
arg_lists = []
parser = argparse.ArgumentParser()
def add_argument_group(name):
arg = parser.add_argument_group(name)
arg_lists.append(arg)
return arg
# Dataset
data_arg = add_argument_group('Dataset')
data_arg.add_argument('--dataset', type=str, default='vimeo90K_septuplet')
data_arg.add_argument('--data_root', type=str, default='/home/user3/Desktop/Chant/Datasets/vimeo_septuplet/')
# data_arg.add_argument('--dataset', type=str, default='Davis')
# data_arg.add_argument('--data_root', type=str, default='/home/zhihao/DATA-M2/video_interpolation/Davis/')
# data_arg.add_argument('--dataset', type=str, default='ucf101')
# data_arg.add_argument('--data_root', type=str, default='/home/zhihao/DATA-M2/video_interpolation/UCF/')
# Model
model_arg = add_argument_group('Model')
model_choices = ["TAE_MVFI_s", "TAE_MVFI_m"]
model_arg.add_argument('--model', choices=model_choices, type=str, default="TAE_MVFI_m")
# Training / test parameters
learn_arg = add_argument_group('Learning')
learn_arg.add_argument('--loss', type=str, default='1*L1')
# learn_arg.add_argument('--loss', type=str, default='1*Charb')
learn_arg.add_argument('--lr', type=float, default=1e-4)
learn_arg.add_argument('--beta1', type=float, default=0.9)
learn_arg.add_argument('--beta2', type=float, default=0.999)
learn_arg.add_argument('--batch_size', type=int, default=4)
learn_arg.add_argument('--test_batch_size', type=int, default=12)
learn_arg.add_argument('--start_epoch', type=int, default=0)
learn_arg.add_argument('--max_epoch', type=int, default=100)
# learn_arg.add_argument('--max_epoch', type=int, default=120)
learn_arg.add_argument('--finetune_epochs', type=int, default=10)
learn_arg.add_argument('--resume', action='store_true')
learn_arg.add_argument('--resume_exp', type=str, default=None)
learn_arg.add_argument('--checkpoint_dir', type=str, default=".")
learn_arg.add_argument("--load_from", type=str, default='checkpoints/TAE_MVFI_m/model_best.pth')
learn_arg.add_argument("--pretrained", type=str, help="Load from a pretrained model.")
# Misc
misc_arg = add_argument_group('Misc')
misc_arg.add_argument('--exp_name', type=str, default='exp')
misc_arg.add_argument('--log_iter', type=int, default=100)
misc_arg.add_argument('--num_gpu', type=int, default=1)
misc_arg.add_argument('--random_seed', type=int, default=103)
misc_arg.add_argument('--num_workers', type=int, default=1)
misc_arg.add_argument('--val_freq', type=int, default=1)
def get_args():
"""Parses all of the arguments above
"""
args, unparsed = parser.parse_known_args()
if args.num_gpu > 0:
setattr(args, 'cuda', True)
else:
setattr(args, 'cuda', False)
if len(unparsed) > 1:
print("Unparsed args: {}".format(unparsed))
return args, unparsed