-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexperiments.py
660 lines (632 loc) · 29 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
# Adapted from: https://github.com/lhoyer/DAFormer
import itertools
import os
from mmcv import Config
# flake8: noqa
def get_model_base(architecture, backbone):
architecture = architecture.replace('sfa_', '')
for j in range(1, 100):
hrda_name = [e for e in architecture.split('_') if f'hrda{j}' in e]
for n in hrda_name:
architecture = architecture.replace(f'{n}_', '')
architecture = architecture.replace('_nodbn', '')
if 'segformer' in architecture:
return {
'mitb5': f'_base_/models/{architecture}_b5.py',
# It's intended that <=b4 refers to b5 config
'mitb4': f'_base_/models/{architecture}_b5.py',
'mitb3': f'_base_/models/{architecture}_b5.py',
'r101v1c': f'_base_/models/{architecture}_r101.py',
}[backbone]
if 'daformer_' in architecture and 'mitb5' in backbone:
return f'_base_/models/{architecture}_mitb5.py'
if 'upernet' in architecture and 'mit' in backbone:
return f'_base_/models/{architecture}_mit.py'
assert 'mit' not in backbone or '-del' in backbone
return {
'dlv2': '_base_/models/deeplabv2_r50-d8.py',
'dlv2red': '_base_/models/deeplabv2red_r50-d8.py',
'dlv3p': '_base_/models/deeplabv3plus_r50-d8.py',
'da': '_base_/models/danet_r50-d8.py',
'isa': '_base_/models/isanet_r50-d8.py',
'uper': '_base_/models/upernet_r50.py',
}[architecture]
def get_pretraining_file(backbone):
if 'mitb5' in backbone:
return 'pretrained/mit_b5.pth'
if 'mitb4' in backbone:
return 'pretrained/mit_b4.pth'
if 'mitb3' in backbone:
return 'pretrained/mit_b3.pth'
if 'r101v1c' in backbone:
return 'open-mmlab://resnet101_v1c'
return {
'r50v1c': 'open-mmlab://resnet50_v1c',
'x50-32': 'open-mmlab://resnext50_32x4d',
'x101-32': 'open-mmlab://resnext101_32x4d',
's50': 'open-mmlab://resnest50',
's101': 'open-mmlab://resnest101',
's200': 'open-mmlab://resnest200',
}[backbone]
def get_backbone_cfg(backbone):
for i in [1, 2, 3, 4, 5]:
if backbone == f'mitb{i}':
return dict(type=f'mit_b{i}')
if backbone == f'mitb{i}-del':
return dict(_delete_=True, type=f'mit_b{i}')
return {
'r50v1c': {
'depth': 50
},
'r101v1c': {
'depth': 101
},
'x50-32': {
'type': 'ResNeXt',
'depth': 50,
'groups': 32,
'base_width': 4,
},
'x101-32': {
'type': 'ResNeXt',
'depth': 101,
'groups': 32,
'base_width': 4,
},
's50': {
'type': 'ResNeSt',
'depth': 50,
'stem_channels': 64,
'radix': 2,
'reduction_factor': 4,
'avg_down_stride': True
},
's101': {
'type': 'ResNeSt',
'depth': 101,
'stem_channels': 128,
'radix': 2,
'reduction_factor': 4,
'avg_down_stride': True
},
's200': {
'type': 'ResNeSt',
'depth': 200,
'stem_channels': 128,
'radix': 2,
'reduction_factor': 4,
'avg_down_stride': True,
},
}[backbone]
def update_decoder_in_channels(cfg, architecture, backbone):
cfg.setdefault('model', {}).setdefault('decode_head', {})
if 'dlv3p' in architecture and 'mit' in backbone:
cfg['model']['decode_head']['c1_in_channels'] = 64
if 'sfa' in architecture:
cfg['model']['decode_head']['in_channels'] = 512
return cfg
def setup_rcs(cfg, temperature, min_crop_ratio):
cfg.setdefault('data', {}).setdefault('train', {})
cfg['data']['train']['rare_class_sampling'] = dict(
min_pixels=3000, class_temp=temperature, min_crop_ratio=min_crop_ratio)
return cfg
def generate_experiment_cfgs(id):
def config_from_vars():
cfg = {
'_base_': ['_base_/default_runtime.py'],
'gpu_model': gpu_model,
'n_gpus': n_gpus
}
if seed is not None:
cfg['seed'] = seed
if launcher is not None:
cfg['launcher'] = launcher
# Setup model config
architecture_mod = architecture
sync_crop_size_mod = sync_crop_size
inference_mod = inference
model_base = get_model_base(architecture_mod, backbone)
model_base_cfg = Config.fromfile(os.path.join('configs', model_base))
cfg['_base_'].append(model_base)
cfg['model'] = {
'pretrained': get_pretraining_file(backbone),
'backbone': get_backbone_cfg(backbone),
}
if 'sfa_' in architecture_mod:
cfg['model']['neck'] = dict(type='SegFormerAdapter')
if '_nodbn' in architecture_mod:
cfg['model'].setdefault('decode_head', {})
cfg['model']['decode_head']['norm_cfg'] = None
cfg = update_decoder_in_channels(cfg, architecture_mod, backbone)
hrda_ablation_opts = None
outer_crop_size = sync_crop_size_mod \
if sync_crop_size_mod is not None \
else (int(crop.split('x')[0]), int(crop.split('x')[1]))
if 'hrda1' in architecture_mod:
o = [e for e in architecture_mod.split('_') if 'hrda' in e][0]
hr_crop_size = (int((o.split('-')[1])), int((o.split('-')[1])))
hr_loss_w = float(o.split('-')[2])
hrda_ablation_opts = o.split('-')[3:]
cfg['model']['type'] = 'HRDAEncoderDecoder'
cfg['model']['scales'] = [1, 0.5]
cfg['model'].setdefault('decode_head', {})
cfg['model']['decode_head']['single_scale_head'] = model_base_cfg[
'model']['decode_head']['type']
cfg['model']['decode_head']['type'] = 'HRDAHead'
cfg['model']['hr_crop_size'] = hr_crop_size
cfg['model']['feature_scale'] = 0.5
cfg['model']['crop_coord_divisible'] = 8
cfg['model']['hr_slide_inference'] = True
cfg['model']['decode_head']['attention_classwise'] = True
cfg['model']['decode_head']['hr_loss_weight'] = hr_loss_w
if outer_crop_size == hr_crop_size:
# If the hr crop is smaller than the lr crop (hr_crop_size <
# outer_crop_size), there is direct supervision for the lr
# prediction as it is not fused in the region without hr
# prediction. Therefore, there is no need for a separate
# lr_loss.
cfg['model']['decode_head']['lr_loss_weight'] = hr_loss_w
# If the hr crop covers the full lr crop region, calculating
# the FD loss on both scales stabilizes the training for
# difficult classes.
cfg['model']['feature_scale'] = 'all' if '_fd' in uda else 0.5
# HRDA Ablations
if hrda_ablation_opts is not None:
for o in hrda_ablation_opts:
if o == 'fixedatt':
# Average the predictions from both scales instead of
# learning a scale attention.
cfg['model']['decode_head']['fixed_attention'] = 0.5
elif o == 'nooverlap':
# Don't use overlapping slide inference for the hr
# prediction.
cfg['model']['hr_slide_overlapping'] = False
elif o == 'singleatt':
# Use the same scale attention for all class channels.
cfg['model']['decode_head']['attention_classwise'] = False
elif o == 'blurhr':
# Use an upsampled lr crop (blurred) for the hr crop
cfg['model']['blur_hr_crop'] = True
elif o == 'samescale':
# Use the same scale/resolution for both crops.
cfg['model']['scales'] = [1, 1]
cfg['model']['feature_scale'] = 1
elif o[:2] == 'sc':
cfg['model']['scales'] = [1, float(o[2:])]
if not isinstance(cfg['model']['feature_scale'], str):
cfg['model']['feature_scale'] = float(o[2:])
else:
raise NotImplementedError(o)
# Setup inference mode
if inference_mod == 'whole' or crop == '2048x1024':
assert model_base_cfg['model']['test_cfg']['mode'] == 'whole'
elif inference_mod == 'slide':
cfg['model'].setdefault('test_cfg', {})
cfg['model']['test_cfg']['mode'] = 'slide'
cfg['model']['test_cfg']['batched_slide'] = True
crsize = sync_crop_size_mod if sync_crop_size_mod is not None \
else [int(e) for e in crop.split('x')]
cfg['model']['test_cfg']['stride'] = [e // 2 for e in crsize]
cfg['model']['test_cfg']['crop_size'] = crsize
architecture_mod += '_sl'
else:
raise NotImplementedError(inference_mod)
# Setup UDA config
if uda == 'target-only':
cfg['_base_'].append(f'_base_/datasets/{target}_{crop}.py')
elif uda == 'source-only':
cfg['_base_'].append(
f'_base_/datasets/{source}_to_{target}_{crop}.py')
else:
if stylization is not None:
cfg['_base_'].append(
f'_base_/datasets/uda_{source}_to_{target}_{crop}_{stylization}.py')
else:
cfg['_base_'].append(
f'_base_/datasets/uda_{source}_to_{target}_{crop}.py')
cfg['_base_'].append(f'_base_/uda/{uda}.py')
cfg['data'] = dict(
samples_per_gpu=batch_size,
workers_per_gpu=workers_per_gpu,
train={})
# DAFormer legacy cropping that only works properly if the training
# crop has the height of the (resized) target image.
if 'dacs' in uda and plcrop in [True, 'v1']:
cfg.setdefault('uda', {})
cfg['uda']['pseudo_weight_ignore_top'] = 15
cfg['uda']['pseudo_weight_ignore_bottom'] = 120
# Generate mask of the pseudo-label margins in the data loader before
# the image itself is cropped to ensure that the pseudo-label margins
# are only masked out if the training crop is at the periphery of the
# image.
if 'dacs' in uda and plcrop == 'v2':
if stylization is not None:
cfg['data']['train']['crop_pseudo_margins_target'] = [30, 240, 30, 30]
else:
cfg['data']['train'].setdefault('target', {})
cfg['data']['train']['target']['crop_pseudo_margins'] = \
[30, 240, 30, 30]
if 'dacs' in uda and rcs_T is not None:
cfg = setup_rcs(cfg, rcs_T, rcs_min_crop)
if 'dacs' in uda and sync_crop_size_mod is not None:
cfg.setdefault('data', {}).setdefault('train', {})
cfg['data']['train']['sync_crop_size'] = sync_crop_size_mod
if stylization is not None:
cfg.setdefault('uda', {})
cfg['uda']['stylization'] = stylization
if inv_loss_weight is not None:
cfg.setdefault('uda', {}).setdefault('stylize', {}).setdefault('inv_loss', {})
cfg['uda']['stylize']['inv_loss']['weight'] = inv_loss_weight
if inv_loss_weight_target is not None:
cfg.setdefault('uda', {}).setdefault('stylize', {}).setdefault('inv_loss', {})
cfg['uda']['stylize']['inv_loss']['weight_target'] = inv_loss_weight_target
if inv_loss_norm is not None:
cfg.setdefault('uda', {}).setdefault('stylize', {}).setdefault('inv_loss', {})
cfg['uda']['stylize']['inv_loss']['norm'] = inv_loss_norm
# Setup data root directories.
if os.environ.get('DIR_SOURCE_DATASET') is not None:
data_root_source = os.environ['DIR_SOURCE_DATASET'] + os.sep
cfg.setdefault('data', {}).setdefault('train', {})
if stylization is not None:
cfg['data']['train']['data_root_source'] = data_root_source
else:
cfg['data']['train'].setdefault('source', {})
cfg['data']['train']['source']['data_root'] = data_root_source
if os.environ.get('DIR_TARGET_DATASET') is not None:
data_root_target = os.environ['DIR_TARGET_DATASET'] + os.sep
cfg.setdefault('data', {}).setdefault('train', {})
if stylization is not None:
cfg['data']['train']['data_root_target'] = data_root_target
else:
cfg['data']['train'].setdefault('target', {})
cfg['data']['train']['target']['data_root'] = data_root_target
cfg.setdefault('data', {}).setdefault('val', {})
cfg['data']['val']['data_root'] = data_root_target
cfg.setdefault('data', {}).setdefault('test', {})
cfg['data']['test']['data_root'] = data_root_target
# Setup optimizer and schedule
if 'dacs' in uda or 'minent' in uda or 'advseg' in uda:
cfg['optimizer_config'] = None # Don't use outer optimizer
cfg['_base_'].extend(
[f'_base_/schedules/{opt}.py', f'_base_/schedules/{schedule}.py'])
cfg['optimizer'] = {'lr': lr}
cfg['optimizer'].setdefault('paramwise_cfg', {})
cfg['optimizer']['paramwise_cfg'].setdefault('custom_keys', {})
opt_param_cfg = cfg['optimizer']['paramwise_cfg']['custom_keys']
if pmult:
opt_param_cfg['head'] = dict(lr_mult=10.)
if 'mit' in backbone:
opt_param_cfg['pos_block'] = dict(decay_mult=0.)
opt_param_cfg['norm'] = dict(decay_mult=0.)
# Setup runner
cfg['runner'] = dict(type='IterBasedRunner', max_iters=iters)
cfg['checkpoint_config'] = dict(
by_epoch=False, interval=iters // 10, max_keep_ckpts=1)
cfg['evaluation'] = dict(interval=iters // 10, metric='mIoU', distributed_eval=distributed_eval, pre_eval=pre_eval)
# Construct config name
uda_mod = uda
if 'dacs' in uda and rcs_T is not None:
uda_mod += f'_rcs{rcs_T}'
if rcs_min_crop != 0.5:
uda_mod += f'-{rcs_min_crop}'
if 'dacs' in uda and sync_crop_size_mod is not None:
uda_mod += f'_sf{sync_crop_size_mod[0]}x{sync_crop_size_mod[1]}'
if 'dacs' in uda:
if not plcrop:
pass
elif plcrop in [True, 'v1']:
uda_mod += '_cpl'
elif plcrop[0] == 'v':
uda_mod += f'_cpl{plcrop[1:]}'
else:
raise NotImplementedError(plcrop)
crop_name = f'_{crop}' if crop != '512x512' else ''
cfg['name'] = f'{source}2{target}{crop_name}_{uda_mod}_' \
f'{architecture_mod}_{backbone}_{schedule}'
if opt != 'adamw':
cfg['name'] += f'_{opt}'
if lr != 0.00006:
cfg['name'] += f'_{lr}'
if not pmult:
cfg['name'] += f'_pm{pmult}'
cfg['exp'] = id
cfg['name_dataset'] = f'{source}2{target}{crop_name}'
cfg['name_architecture'] = f'{architecture_mod}_{backbone}'
cfg['name_encoder'] = backbone
cfg['name_decoder'] = architecture_mod
cfg['name_uda'] = uda_mod
cfg['name_opt'] = f'{opt}_{lr}_pm{pmult}_{schedule}' \
f'_{n_gpus}x{batch_size}_{iters // 1000}k'
if seed is not None:
cfg['name'] += f'_s{seed}'
cfg['name'] = cfg['name'].replace('.', '').replace('True', 'T') \
.replace('False', 'F').replace('cityscapes', 'cs') \
.replace('synthia', 'syn') \
.replace('darkzurich', 'dzur')
return cfg
# -------------------------------------------------------------------------
# Set some defaults
# -------------------------------------------------------------------------
cfgs = []
n_gpus = 1
launcher = None
distributed_eval = False
pre_eval = False
batch_size = 2
iters = 40000
opt, lr, schedule, pmult = 'adamw', 0.00006, 'poly10warm', True
crop = '512x512'
gpu_model = 'NVIDIAGeForceRTX2080Ti'
datasets = [
('gta', 'cityscapes'),
]
stylization = None
architecture = None
ciss_config = None
inv_loss_weight = None
inv_loss_weight_target = None
inv_loss_norm = None
workers_per_gpu = 1
rcs_T = None
rcs_min_crop = 0.5
plcrop = False
inference = 'whole'
sync_crop_size = None
# ------------------------------------------------
# Table 1: Final CISS on Cityscapes -> Dark Zurich.
# -------------------------------------------------
elif id == 135:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'darkzurichHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_ceorig_inv_trg_ceorigorig_invorigorigstylizedstylized', 0.01, False
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for (inv_loss_weight, inv_loss_weight_target) in [
(100.0, 10.0),
]:
for seed in seeds:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# ----------------------------------------
# Table 2: Final CISS on Cityscapes->ACDC.
# ----------------------------------------
if id == 1:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_ceorig_inv_trg_ceorigorig_invorigorigstylizedstylized', 0.01, False
inv_loss_weight = 50.0
inv_loss_weight_target = 20.0
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for seed in seeds:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# --------------------------------------------------
# Table 8, row 1: HRDA baseline on Cityscapes->ACDC.
# --------------------------------------------------
elif id == 50:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
dec, backbone = 'daformer_sepaspp', 'mitb5'
# Use plcrop=False as ACDC has no rectification
# artifacts in contrast to Cityscapes.
uda, rcs_T, plcrop = 'dacs_a999_fdthings', 0.01, False
inference = 'slide'
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for seed in seeds:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# -------------------------------------------------------------------------
# Table 8, row 2: FDA baseline on Cityscapes -> ACDC.
# -------------------------------------------------------------------------
elif id == 51:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_cestylized', 0.01, False
inference = 'slide'
workers_per_gpu = 32
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for seed in seeds:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# -----------------------------------------------------------------------------------------------------------------------
# Table 9: CISS ablation study on invariance loss weights in source domain: CE stylized -> N, CE original -> Y, Inv -> Y.
# -----------------------------------------------------------------------------------------------------------------------
elif id == 129:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_ceorig_inv', 0.01, False
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for seed in seeds:
for inv_loss_weight in [
50.0,
100.0,
200.0,
500.0,
1000.0,
]:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# -----------------------------------------------------------------------------------------------------------------------
# Table 9: CISS ablation study on invariance loss weights in target domain: CE stylized -> N, CE original -> Y, Inv -> Y.
# -----------------------------------------------------------------------------------------------------------------------
elif id == 130:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_ceorig_trg_ceorigorig_invorigorigstylizedstylized', 0.01, False
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for seed in seeds:
for inv_loss_weight in [
20.0,
50.0,
100.0,
200.0,
500.0,
]:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# ---------------------------------------------------------------------------------------------------------------------------------
# Table 8, row 6: CISS ablation study on target domain with CE orig + Inv on source.
# ---------------------------------------------------------------------------------------------------------------------------------
elif id == 133:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_ceorig_inv_trg_ceorigorig_cestylizedstylized', 0.01, False
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for seed in seeds:
for inv_loss_weight in [
200.0,
]:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# ----------------------------------------------------------------------------------------
# Table 8, row 3: CISS ablation study on source domain.
# ----------------------------------------------------------------------------------------
elif id == 134:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_cestylized_ceorig', 0.01, False
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for seed in seeds:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# --------------------------------------------------------------------------------------------------------
# Table 10: CISS with Reinhard stylization in target domain.
# --------------------------------------------------------------------------------------------------------
elif id == 136:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'reinhard'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_ceorig_trg_ceorigorig_invorigorigstylizedstylized', 0.01, False
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for inv_loss_weight in [
2.0,
]:
for seed in seeds:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# ------------------------------------------------------------------------------------------------------------------------------------------
# Figure 4: CISS ablation study on invariance point in source domain. Here, invariance is applied to the outputs of the network (red curve).
# ------------------------------------------------------------------------------------------------------------------------------------------
elif id == 137:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_ceorig_inv', 0.01, False
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for inv_loss_weight in [
[0.0, 0.0, 0.0, 0.0, 0.001],
[0.0, 0.0, 0.0, 0.0, 0.01],
[0.0, 0.0, 0.0, 0.0, 0.1],
[0.0, 0.0, 0.0, 0.0, 1.0],
[0.0, 0.0, 0.0, 0.0, 10.0],
]:
for seed in seeds:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
# -------------------------------------------
# Final CISS on Cityscapes -> ACDC-reference.
# -------------------------------------------
elif id == 141:
seeds = [0, 1, 2]
# source, target, crop, rcs_min_crop
cs2acdc = ('cityscapesHR', 'acdcrefHR', '1024x1024', 0.5 * (2 ** 2))
stylization = 'fda'
dec, backbone = 'daformer_sepaspp', 'mitb5'
uda, rcs_T, plcrop = 'dacs_a999_fdthings_ciss_src_ceorig_inv_trg_ceorigorig_invorigorigstylizedstylized', 0.01, False
inv_loss_weight = 50.0
inv_loss_weight_target = 20.0
inference = 'slide'
workers_per_gpu = 16
for dataset, architecture, sync_crop_size in [
(cs2acdc, f'hrda1-512-0.1_{dec}', None),
]:
for seed in seeds:
source, target, crop, rcs_min_crop = dataset
gpu_model = 'NVIDIATITANRTX'
cfg = config_from_vars()
cfgs.append(cfg)
else:
raise NotImplementedError('Unknown id {}'.format(id))
return cfgs