This repository has been archived by the owner on Oct 31, 2020. It is now read-only.
forked from luxonis/depthai
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdepthai_demo.py
executable file
·382 lines (321 loc) · 17.5 KB
/
depthai_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
#!/usr/bin/env python3
import json
from pathlib import Path
import platform
import os
import subprocess
from time import time, sleep, monotonic
from datetime import datetime
import cv2
import numpy as np
import sys
import depthai
print('Using depthai module from: ', depthai.__file__)
print('Depthai version installed: ', depthai.__version__)
from depthai_helpers.version_check import check_depthai_version
check_depthai_version()
import consts.resource_paths
from depthai_helpers import utils
from depthai_helpers.cli_utils import cli_print, PrintColors
from depthai_helpers.config_manager import DepthConfigManager
from depthai_helpers.arg_manager import CliArgs
is_rpi = platform.machine().startswith('arm') or platform.machine().startswith('aarch64')
from depthai_helpers.object_tracker_handler import show_tracklets
global args, cnn_model2
class DepthAI:
global is_rpi
process_watchdog_timeout=10 #seconds
nnet_packets = None
data_packets = None
runThread = True
def reset_process_wd(self):
global wd_cutoff
wd_cutoff=monotonic()+self.process_watchdog_timeout
return
def on_trackbar_change(self, value):
self.device.send_disparity_confidence_threshold(value)
return
def stopLoop(self):
self.runThread = False
def startLoop(self):
cliArgs = CliArgs()
args = vars(cliArgs.parse_args())
configMan = DepthConfigManager(args)
if is_rpi and args['pointcloud']:
raise NotImplementedError("Point cloud visualization is currently not supported on RPI")
# these are largely for debug and dev.
cmd_file, debug_mode = configMan.getCommandFile()
usb2_mode = configMan.getUsb2Mode()
# decode_nn and show_nn are functions that are dependent on the neural network that's being run.
decode_nn = configMan.decode_nn
show_nn = configMan.show_nn
# Labels for the current neural network. They are parsed from the blob config file.
labels = configMan.labels
NN_json = configMan.NN_config
# This json file is sent to DepthAI. It communicates what options you'd like to enable and what model you'd like to run.
config = configMan.jsonConfig
# Create a list of enabled streams ()
stream_names = [stream if isinstance(stream, str) else stream['name'] for stream in configMan.stream_list]
enable_object_tracker = 'object_tracker' in stream_names
# grab video file, if option exists
video_file = configMan.video_file
self.device = None
if debug_mode:
print('Cmd file: ', cmd_file, ' args["device_id"]: ', args['device_id'])
self.device = depthai.Device(cmd_file, args['device_id'])
else:
self.device = depthai.Device(args['device_id'], usb2_mode)
print(stream_names)
print('Available streams: ' + str(self.device.get_available_streams()))
# create the pipeline, here is the first connection with the device
p = self.device.create_pipeline(config=config)
if p is None:
print('Pipeline is not created.')
exit(3)
nn2depth = self.device.get_nn_to_depth_bbox_mapping()
t_start = time()
frame_count = {}
frame_count_prev = {}
nnet_prev = {}
nnet_prev["entries_prev"] = {}
nnet_prev["nnet_source"] = {}
frame_count['nn'] = {}
frame_count_prev['nn'] = {}
NN_cams = {'rgb', 'left', 'right'}
for cam in NN_cams:
nnet_prev["entries_prev"][cam] = None
nnet_prev["nnet_source"][cam] = None
frame_count['nn'][cam] = 0
frame_count_prev['nn'][cam] = 0
stream_windows = []
for s in stream_names:
if s == 'previewout':
for cam in NN_cams:
stream_windows.append(s + '-' + cam)
else:
stream_windows.append(s)
for w in stream_windows:
frame_count[w] = 0
frame_count_prev[w] = 0
tracklets = None
self.reset_process_wd()
time_start = time()
def print_packet_info_header():
print('[hostTimestamp streamName] devTstamp seq camSrc width height Bpp')
def print_packet_info(packet, stream_name):
meta = packet.getMetadata()
print("[{:.6f} {:15s}]".format(time()-time_start, stream_name), end='')
if meta is not None:
source = meta.getCameraName()
if stream_name.startswith('disparity') or stream_name.startswith('depth'):
source += '(rectif)'
print(" {:.6f}".format(meta.getTimestamp()), meta.getSequenceNum(), source, end='')
print('', meta.getFrameWidth(), meta.getFrameHeight(), meta.getFrameBytesPP(), end='')
print()
return
def keypress_handler(self, key, stream_names):
cam_l = depthai.CameraControl.CamId.LEFT
cam_r = depthai.CameraControl.CamId.RIGHT
cmd_ae_region = depthai.CameraControl.Command.AE_REGION
cmd_exp_comp = depthai.CameraControl.Command.EXPOSURE_COMPENSATION
keypress_handler_lut = {
ord('f'): lambda: self.device.request_af_trigger(),
ord('1'): lambda: self.device.request_af_mode(depthai.AutofocusMode.AF_MODE_AUTO),
ord('2'): lambda: self.device.request_af_mode(depthai.AutofocusMode.AF_MODE_CONTINUOUS_VIDEO),
# 5,6,7,8,9,0: short example for using ISP 3A controls
ord('5'): lambda: self.device.send_camera_control(cam_l, cmd_ae_region, '0 0 200 200 1'),
ord('6'): lambda: self.device.send_camera_control(cam_l, cmd_ae_region, '1000 0 200 200 1'),
ord('7'): lambda: self.device.send_camera_control(cam_l, cmd_exp_comp, '-2'),
ord('8'): lambda: self.device.send_camera_control(cam_l, cmd_exp_comp, '+2'),
ord('9'): lambda: self.device.send_camera_control(cam_r, cmd_exp_comp, '-2'),
ord('0'): lambda: self.device.send_camera_control(cam_r, cmd_exp_comp, '+2'),
}
if key in keypress_handler_lut:
keypress_handler_lut[key]()
elif key == ord('c'):
if 'jpegout' in stream_names:
self.device.request_jpeg()
else:
print("'jpegout' stream not enabled. Try settings -s jpegout to enable it")
return
for stream in stream_names:
if stream in ["disparity", "disparity_color", "depth"]:
cv2.namedWindow(stream)
trackbar_name = 'Disparity confidence'
conf_thr_slider_min = 0
conf_thr_slider_max = 255
cv2.createTrackbar(trackbar_name, stream, conf_thr_slider_min, conf_thr_slider_max, self.on_trackbar_change)
cv2.setTrackbarPos(trackbar_name, stream, args['disparity_confidence_threshold'])
right_rectified = None
pcl_converter = None
ops = 0
prevTime = time()
if args['verbose']: print_packet_info_header()
while self.runThread:
# retreive data from the device
# data is stored in packets, there are nnet (Neural NETwork) packets which have additional functions for NNet result interpretation
self.nnet_packets, self.data_packets = p.get_available_nnet_and_data_packets(blocking=True)
### Uncomment to print ops
# ops = ops + 1
# if time() - prevTime > 1.0:
# print('OPS: ', ops)
# ops = 0
# prevTime = time()
packets_len = len(self.nnet_packets) + len(self.data_packets)
if packets_len != 0:
self.reset_process_wd()
else:
cur_time=monotonic()
if cur_time > wd_cutoff:
print("process watchdog timeout")
os._exit(10)
for _, nnet_packet in enumerate(self.nnet_packets):
if args['verbose']: print_packet_info(nnet_packet, 'NNet')
meta = nnet_packet.getMetadata()
camera = 'rgb'
if meta != None:
camera = meta.getCameraName()
nnet_prev["nnet_source"][camera] = nnet_packet
nnet_prev["entries_prev"][camera] = decode_nn(nnet_packet, config=config, NN_json=NN_json)
frame_count['metaout'] += 1
frame_count['nn'][camera] += 1
for packet in self.data_packets:
window_name = packet.stream_name
if packet.stream_name not in stream_names:
continue # skip streams that were automatically added
if args['verbose']: print_packet_info(packet, packet.stream_name)
packetData = packet.getData()
if packetData is None:
print('Invalid packet data!')
continue
elif packet.stream_name == 'previewout':
meta = packet.getMetadata()
camera = 'rgb'
if meta != None:
camera = meta.getCameraName()
window_name = 'previewout-' + camera
# the format of previewout image is CHW (Chanel, Height, Width), but OpenCV needs HWC, so we
# change shape (3, 300, 300) -> (300, 300, 3)
data0 = packetData[0,:,:]
data1 = packetData[1,:,:]
data2 = packetData[2,:,:]
frame = cv2.merge([data0, data1, data2])
if nnet_prev["entries_prev"][camera] is not None:
frame = show_nn(nnet_prev["entries_prev"][camera], frame, NN_json=NN_json, config=config)
if enable_object_tracker and tracklets is not None:
frame = show_tracklets(tracklets, frame, labels)
cv2.putText(frame, "fps: " + str(frame_count_prev[window_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0))
cv2.putText(frame, "NN fps: " + str(frame_count_prev['nn'][camera]), (2, frame.shape[0]-4), cv2.FONT_HERSHEY_SIMPLEX, 0.4, (0, 255, 0))
cv2.imshow(window_name, frame)
elif packet.stream_name in ['left', 'right', 'disparity', 'rectified_left', 'rectified_right']:
frame_bgr = packetData
if args['pointcloud'] and packet.stream_name == 'rectified_right':
right_rectified = packetData
cv2.putText(frame_bgr, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0))
cv2.putText(frame_bgr, "fps: " + str(frame_count_prev[window_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0))
camera = None
if args['draw_bb_depth']:
camera = args['cnn_camera']
if packet.stream_name == 'disparity':
if camera == 'left_right':
camera = 'right'
elif camera != 'rgb':
camera = packet.getMetadata().getCameraName()
if nnet_prev["entries_prev"][camera] is not None:
frame_bgr = show_nn(nnet_prev["entries_prev"][camera], frame_bgr, NN_json=NN_json, config=config, nn2depth=nn2depth)
cv2.imshow(window_name, frame_bgr)
elif packet.stream_name.startswith('depth') or packet.stream_name == 'disparity_color':
frame = packetData
if len(frame.shape) == 2:
if frame.dtype == np.uint8: # grayscale
cv2.putText(frame, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255))
cv2.putText(frame, "fps: " + str(frame_count_prev[window_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255))
else: # uint16
if args['pointcloud'] and "depth" in stream_names and "rectified_right" in stream_names and right_rectified is not None:
try:
from depthai_helpers.projector_3d import PointCloudVisualizer
except ImportError as e:
raise ImportError(f"\033[1;5;31mError occured when importing PCL projector: {e} \033[0m ")
if pcl_converter is None:
pcl_converter = PointCloudVisualizer(self.device.get_right_intrinsic(), 1280, 720)
right_rectified = cv2.flip(right_rectified, 1)
pcl_converter.rgbd_to_projection(frame, right_rectified)
pcl_converter.visualize_pcd()
frame = (65535 // frame).astype(np.uint8)
#colorize depth map, comment out code below to obtain grayscale
frame = cv2.applyColorMap(frame, cv2.COLORMAP_HOT)
# frame = cv2.applyColorMap(frame, cv2.COLORMAP_JET)
cv2.putText(frame, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 255)
cv2.putText(frame, "fps: " + str(frame_count_prev[window_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 255)
else: # bgr
cv2.putText(frame, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255))
cv2.putText(frame, "fps: " + str(frame_count_prev[window_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, 255)
if args['draw_bb_depth']:
camera = args['cnn_camera']
if camera == 'left_right':
camera = 'right'
if nnet_prev["entries_prev"][camera] is not None:
frame = show_nn(nnet_prev["entries_prev"][camera], frame, NN_json=NN_json, config=config, nn2depth=nn2depth)
cv2.imshow(window_name, frame)
elif packet.stream_name == 'jpegout':
jpg = packetData
mat = cv2.imdecode(jpg, cv2.IMREAD_COLOR)
cv2.imshow('jpegout', mat)
elif packet.stream_name == 'video':
videoFrame = packetData
videoFrame.tofile(video_file)
#mjpeg = packetData
#mat = cv2.imdecode(mjpeg, cv2.IMREAD_COLOR)
#cv2.imshow('mjpeg', mat)
elif packet.stream_name == 'color':
meta = packet.getMetadata()
w = meta.getFrameWidth()
h = meta.getFrameHeight()
yuv420p = packetData.reshape( (h * 3 // 2, w) )
bgr = cv2.cvtColor(yuv420p, cv2.COLOR_YUV2BGR_IYUV)
scale = configMan.getColorPreviewScale()
bgr = cv2.resize(bgr, ( int(w*scale), int(h*scale) ), interpolation = cv2.INTER_AREA)
cv2.putText(bgr, packet.stream_name, (25, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0))
cv2.putText(bgr, "fps: " + str(frame_count_prev[window_name]), (25, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0))
cv2.imshow("color", bgr)
elif packet.stream_name == 'meta_d2h':
str_ = packet.getDataAsStr()
dict_ = json.loads(str_)
print('meta_d2h Temp',
' CSS:' + '{:6.2f}'.format(dict_['sensors']['temperature']['css']),
' MSS:' + '{:6.2f}'.format(dict_['sensors']['temperature']['mss']),
' UPA:' + '{:6.2f}'.format(dict_['sensors']['temperature']['upa0']),
' DSS:' + '{:6.2f}'.format(dict_['sensors']['temperature']['upa1']))
elif packet.stream_name == 'object_tracker':
tracklets = packet.getObjectTracker()
frame_count[window_name] += 1
t_curr = time()
if t_start + 1.0 < t_curr:
t_start = t_curr
# print("metaout fps: " + str(frame_count_prev["metaout"]))
stream_windows = []
for s in stream_names:
if s == 'previewout':
for cam in NN_cams:
stream_windows.append(s + '-' + cam)
frame_count_prev['nn'][cam] = frame_count['nn'][cam]
frame_count['nn'][cam] = 0
else:
stream_windows.append(s)
for w in stream_windows:
frame_count_prev[w] = frame_count[w]
frame_count[w] = 0
key = cv2.waitKey(1)
if key == ord('q'):
break
else:
keypress_handler(self, key, stream_names)
del p # in order to stop the pipeline object should be deleted, otherwise device will continue working. This is required if you are going to add code after the main loop, otherwise you can ommit it.
del self.device
# Close video output file if was opened
if video_file is not None:
video_file.close()
print('py: DONE.')
if __name__ == "__main__":
dai = DepthAI()
dai.startLoop()