-
Notifications
You must be signed in to change notification settings - Fork 210
/
Copy pathweb_demo.py
267 lines (221 loc) · 10.5 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import json
import os.path
import tempfile
import sys
import re
import uuid
import requests
from argparse import ArgumentParser
import torchaudio
from transformers import WhisperFeatureExtractor, AutoTokenizer
from speech_tokenizer.modeling_whisper import WhisperVQEncoder
sys.path.insert(0, "./cosyvoice")
sys.path.insert(0, "./third_party/Matcha-TTS")
from speech_tokenizer.utils import extract_speech_token
import gradio as gr
import torch
audio_token_pattern = re.compile(r"<\|audio_(\d+)\|>")
from flow_inference import AudioDecoder
from audio_process import AudioStreamProcessor
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int, default="8888")
parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
parser.add_argument("--tokenizer-path", type= str, default="THUDM/glm-4-voice-tokenizer")
args = parser.parse_args()
flow_config = os.path.join(args.flow_path, "config.yaml")
flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
glm_tokenizer = None
device = "cuda"
audio_decoder: AudioDecoder = None
whisper_model, feature_extractor = None, None
def initialize_fn():
global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
if audio_decoder is not None:
return
# GLM
glm_tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
# Flow & Hift
audio_decoder = AudioDecoder(config_path=flow_config, flow_ckpt_path=flow_checkpoint,
hift_ckpt_path=hift_checkpoint,
device=device)
# Speech tokenizer
whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)
def clear_fn():
return [], [], '', '', '', None, None
def inference_fn(
temperature: float,
top_p: float,
max_new_token: int,
input_mode,
audio_path: str | None,
input_text: str | None,
history: list[dict],
previous_input_tokens: str,
previous_completion_tokens: str,
):
if input_mode == "audio":
assert audio_path is not None
history.append({"role": "user", "content": {"path": audio_path}})
audio_tokens = extract_speech_token(
whisper_model, feature_extractor, [audio_path]
)[0]
if len(audio_tokens) == 0:
raise gr.Error("No audio tokens extracted")
audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
user_input = audio_tokens
system_prompt = "User will provide you with a speech instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens. "
else:
assert input_text is not None
history.append({"role": "user", "content": input_text})
user_input = input_text
system_prompt = "User will provide you with a text instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens."
# Gather history
inputs = previous_input_tokens + previous_completion_tokens
inputs = inputs.strip()
if "<|system|>" not in inputs:
inputs += f"<|system|>\n{system_prompt}"
inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
with torch.no_grad():
response = requests.post(
"http://localhost:10000/generate_stream",
data=json.dumps({
"prompt": inputs,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_token,
}),
stream=True
)
text_tokens, audio_tokens = [], []
audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
complete_tokens = []
prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
this_uuid = str(uuid.uuid4())
tts_speechs = []
tts_mels = []
prev_mel = None
is_finalize = False
block_size_list = [25,50,100,150,200]
block_size_idx = 0
block_size = block_size_list[block_size_idx]
audio_processor = AudioStreamProcessor()
for chunk in response.iter_lines():
token_id = json.loads(chunk)["token_id"]
if token_id == end_token_id:
is_finalize = True
if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
if block_size_idx < len(block_size_list) - 1:
block_size_idx += 1
block_size = block_size_list[block_size_idx]
tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)
if prev_mel is not None:
prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)
tts_speech, tts_mel = audio_decoder.token2wav(tts_token, uuid=this_uuid,
prompt_token=flow_prompt_speech_token.to(device),
prompt_feat=prompt_speech_feat.to(device),
finalize=is_finalize)
prev_mel = tts_mel
audio_bytes = audio_processor.process(tts_speech.clone().cpu().numpy()[0], last=is_finalize)
tts_speechs.append(tts_speech.squeeze())
tts_mels.append(tts_mel)
if audio_bytes:
yield history, inputs, '', '', audio_bytes, None
flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
audio_tokens = []
if not is_finalize:
complete_tokens.append(token_id)
if token_id >= audio_offset:
audio_tokens.append(token_id - audio_offset)
else:
text_tokens.append(token_id)
tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())
def update_input_interface(input_mode):
if input_mode == "audio":
return [gr.update(visible=True), gr.update(visible=False)]
else:
return [gr.update(visible=False), gr.update(visible=True)]
# Create the Gradio interface
with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
with gr.Row():
temperature = gr.Number(
label="Temperature",
value=0.2
)
top_p = gr.Number(
label="Top p",
value=0.8
)
max_new_token = gr.Number(
label="Max new tokens",
value=2000,
)
chatbot = gr.Chatbot(
elem_id="chatbot",
bubble_full_width=False,
type="messages",
scale=1,
)
with gr.Row():
with gr.Column():
input_mode = gr.Radio(["audio", "text"], label="Input Mode", value="audio")
audio = gr.Audio(label="Input audio", type='filepath', show_download_button=True, visible=True)
text_input = gr.Textbox(label="Input text", placeholder="Enter your text here...", lines=2, visible=False)
with gr.Column():
submit_btn = gr.Button("Submit")
reset_btn = gr.Button("Clear")
output_audio = gr.Audio(label="Play", streaming=True,
autoplay=True, show_download_button=False)
complete_audio = gr.Audio(label="Last Output Audio (If Any)", show_download_button=True)
gr.Markdown("""## Debug Info""")
with gr.Row():
input_tokens = gr.Textbox(
label=f"Input Tokens",
interactive=False,
)
completion_tokens = gr.Textbox(
label=f"Completion Tokens",
interactive=False,
)
detailed_error = gr.Textbox(
label=f"Detailed Error",
interactive=False,
)
history_state = gr.State([])
respond = submit_btn.click(
inference_fn,
inputs=[
temperature,
top_p,
max_new_token,
input_mode,
audio,
text_input,
history_state,
input_tokens,
completion_tokens,
],
outputs=[history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]
)
respond.then(lambda s: s, [history_state], chatbot)
reset_btn.click(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio])
input_mode.input(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]).then(update_input_interface, inputs=[input_mode], outputs=[audio, text_input])
initialize_fn()
# Launch the interface
demo.launch(
server_port=args.port,
server_name=args.host
)