forked from tornadomeet/mx-rcnn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_end2end.py
172 lines (159 loc) · 9.67 KB
/
train_end2end.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import logging
import os
import mxnet as mx
from rcnn.callback import Speedometer
from rcnn.config import config
from rcnn.loader import AnchorLoader
from rcnn.metric import AccuracyMetric, LogLossMetric, SmoothL1LossMetric
from rcnn.module import MutableModule
from rcnn.symbol import get_faster_rcnn
from utils.load_data import load_gt_roidb
from utils.load_model import do_checkpoint, load_param
from rcnn.warmup import WarmupScheduler
logger = logging.getLogger()
logger.setLevel(logging.INFO)
def end2end_train(image_set, test_image_set, year, root_path, devkit_path, pretrained, epoch, prefix,
ctx, begin_epoch, num_epoch, frequent, kv_store, mom, wd, lr, num_classes, monitor,
work_load_list=None, resume=False, use_flip=True, factor_step=50000):
# set up logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
mon = None
config.TRAIN.BG_THRESH_HI = 0.5 # TODO(verify)
config.TRAIN.BG_THRESH_LO = 0.0 # TODO(verify)
config.TRAIN.RPN_MIN_SIZE = 16
logging.info('########## TRAIN FASTER-RCNN WITH APPROXIMATE JOINT END2END #############')
config.TRAIN.HAS_RPN = True
config.END2END = 1
config.TRAIN.BBOX_NORMALIZATION_PRECOMPUTED = True
sym = get_faster_rcnn(num_classes=num_classes)
feat_sym = sym.get_internals()['rpn_cls_score_output']
# setup multi-gpu
config.TRAIN.IMS_PER_BATCH *= len(ctx)
config.TRAIN.BATCH_SIZE *= len(ctx) # no used here
# infer max shape
max_data_shape = [('data', (config.TRAIN.IMS_PER_BATCH, 3, 1000, 1000))]
max_data_shape_dict = {k: v for k, v in max_data_shape}
_, feat_shape, _ = feat_sym.infer_shape(**max_data_shape_dict)
from rcnn.minibatch import assign_anchor
import numpy as np
label = assign_anchor(feat_shape[0], np.zeros((0, 5)), [[1000, 1000, 1.0]])
max_label_shape = [('label', label['label'].shape),
('bbox_target', label['bbox_target'].shape),
('bbox_inside_weight', label['bbox_inside_weight'].shape),
('bbox_outside_weight', label['bbox_outside_weight'].shape),
('gt_boxes', (config.TRAIN.IMS_PER_BATCH, 5*100))] # assume at most 100 object in image
print 'providing maximum shape', max_data_shape, max_label_shape
# load training data
voc, roidb = load_gt_roidb(image_set, year, root_path, devkit_path, flip=use_flip)
train_data = AnchorLoader(feat_sym, roidb, batch_size=config.TRAIN.IMS_PER_BATCH, shuffle=True, mode='train',
ctx=ctx, work_load_list=work_load_list)
# load pretrained
args, auxs, _ = load_param(pretrained, epoch, convert=True)
# initialize params
if not resume:
del args['fc8_weight']
del args['fc8_bias']
input_shapes = {k: (1,)+ v[1::] for k, v in train_data.provide_data + train_data.provide_label}
arg_shape, _, _ = sym.infer_shape(**input_shapes)
arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
args['rpn_conv_3x3_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_conv_3x3_weight'])
args['rpn_conv_3x3_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_conv_3x3_bias'])
args['rpn_cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['rpn_cls_score_weight'])
args['rpn_cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_cls_score_bias'])
args['rpn_bbox_pred_weight'] = mx.random.normal(0, 0.001, shape=arg_shape_dict['rpn_bbox_pred_weight']) # guarantee not likely explode with bbox_delta
args['rpn_bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['rpn_bbox_pred_bias'])
args['cls_score_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['cls_score_weight'])
args['cls_score_bias'] = mx.nd.zeros(shape=arg_shape_dict['cls_score_bias'])
args['bbox_pred_weight'] = mx.random.normal(0, 0.01, shape=arg_shape_dict['bbox_pred_weight'])
args['bbox_pred_bias'] = mx.nd.zeros(shape=arg_shape_dict['bbox_pred_bias'])
# prepare training
if config.TRAIN.FINETUNE:
fixed_param_prefix = ['conv1', 'conv2', 'conv3', 'conv4', 'conv5']
else:
fixed_param_prefix = ['conv1', 'conv2']
data_names = [k[0] for k in train_data.provide_data]
label_names = [k[0] for k in train_data.provide_label]
batch_end_callback = Speedometer(train_data.batch_size, frequent=frequent)
epoch_end_callback = do_checkpoint(prefix)
rpn_eval_metric = AccuracyMetric(use_ignore=True, ignore=-1, ex_rpn=True)
rpn_cls_metric = LogLossMetric(use_ignore=True, ignore=-1, ex_rpn=True)
rpn_bbox_metric = SmoothL1LossMetric(ex_rpn=True)
eval_metric = AccuracyMetric()
cls_metric = LogLossMetric()
bbox_metric = SmoothL1LossMetric()
eval_metrics = mx.metric.CompositeEvalMetric()
for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
eval_metrics.add(child_metric)
optimizer_params = {'momentum': mom,
'wd': wd,
'learning_rate': lr,
'lr_scheduler': WarmupScheduler(factor_step, 0.1, warmup_lr=lr*0.1, warmup_step=200) if not resume \
else mx.lr_scheduler.FactorScheduler(factor_step, 0.1),
'clip_gradient': 1.0,
'rescale_grad': 1.0 }
# 'rescale_grad': (1.0 / config.TRAIN.RPN_BATCH_SIZE)}
# train
mod = MutableModule(sym, data_names=data_names, label_names=label_names,
logger=logger, context=ctx, work_load_list=work_load_list,
max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
fixed_param_prefix=fixed_param_prefix)
if monitor:
def norm_stat(d):
return mx.nd.norm(d)/np.sqrt(d.size)
mon = mx.mon.Monitor(100, norm_stat)
mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback, kvstore=kv_store,
optimizer='sgd', optimizer_params=optimizer_params, monitor=mon,
arg_params=args, aux_params=auxs, begin_epoch=begin_epoch, num_epoch=num_epoch)
def parse_args():
parser = argparse.ArgumentParser(description='Train Faster R-CNN Network')
parser.add_argument('--image_set', dest='image_set', help='can be trainval or train',
default='trainval', type=str)
parser.add_argument('--num-classes', dest='num_classes', help='the class number of dataset',
default=21, type=int)
parser.add_argument('--test_image_set', dest='test_image_set', help='can be test or val',
default='test', type=str)
parser.add_argument('--year', dest='year', help='can be 2007, 2010, 2012',
default='2007', type=str)
parser.add_argument('--no-flip', action='store_true', default=False,
help='if true, then will flip the dataset')
parser.add_argument('--root_path', dest='root_path', help='output data folder',
default=os.path.join(os.getcwd(), 'data'), type=str)
parser.add_argument('--devkit_path', dest='devkit_path', help='VOCdevkit path',
default=os.path.join(os.getcwd(), 'data', 'VOCdevkit'), type=str)
parser.add_argument('--pretrained', dest='pretrained', help='pretrained model prefix',
default=os.path.join(os.getcwd(), 'model', 'vgg16'), type=str)
parser.add_argument('--load-epoch', dest='load_epoch', help='epoch of pretrained model',
default=0, type=int)
parser.add_argument('--prefix', dest='prefix', help='new model prefix',
default=os.path.join(os.getcwd(), 'model', 'faster-rcnn'), type=str)
parser.add_argument('--gpus', dest='gpu_ids', help='GPU device to train with',
default='0', type=str)
parser.add_argument('--num_epoch', dest='num_epoch', help='end epoch of faster rcnn end2end training',
default=7, type=int)
parser.add_argument('--frequent', dest='frequent', help='frequency of logging',
default=20, type=int)
parser.add_argument('--kv_store', dest='kv_store', help='the kv-store type',
default='device', type=str)
parser.add_argument('--work_load_list', dest='work_load_list', help='work load for different devices',
default=None, type=list)
parser.add_argument('--lr', type=float, default=0.001, help='initialization learning reate')
parser.add_argument('--mom', type=float, default=0.9, help='momentum for sgd')
parser.add_argument('--wd', type=float, default=0.0005, help='weight decay for sgd')
parser.add_argument('--resume', action='store_true', default=False,
help='if true, then will retrain the model from rcnn')
parser.add_argument('--factor-step',type=int, default=50000, help='the step used for lr factor')
parser.add_argument('--monitor', action='store_true', default=False,
help='if true, then will use monitor debug')
args = parser.parse_args()
logging.info(args)
return args
if __name__ == '__main__':
args = parse_args()
ctx = [mx.gpu(int(i)) for i in args.gpu_ids.split(',')]
end2end_train(args.image_set, args.test_image_set, args.year, args.root_path, args.devkit_path,
args.pretrained, args.load_epoch, args.prefix, ctx, args.load_epoch, args.num_epoch,
args.frequent, args.kv_store, args.mom, args.wd, args.lr, args.num_classes, args.monitor,
args.work_load_list, args.resume, not args.no_flip, args.factor_step)