forked from Hanqer/deep-hough-transform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_ops.py
280 lines (240 loc) · 9.65 KB
/
basic_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import cv2
import numpy as np
import math
import torch
from scipy.ndimage.morphology import distance_transform_edt
class Line(object):
def __init__(self, coordinates=[0, 0, 1, 1]):
"""
coordinates: [y0, x0, y1, x1]
"""
assert isinstance(coordinates, list)
assert len(coordinates) == 4
assert coordinates[0]!=coordinates[2] or coordinates[1]!=coordinates[3]
self.__coordinates = coordinates
@property
def coord(self):
return self.__coordinates
@property
def length(self):
start = np.array(self.coord[:2])
end = np.array(self.coord[2::])
return np.sqrt(((start - end) ** 2).sum())
def angle(self):
y0, x0, y1, x1 = self.coord
if x0 == x1:
return -np.pi / 2
return np.arctan((y0-y1) / (x0-x1))
def rescale(self, rh, rw):
coor = np.array(self.__coordinates)
r = np.array([rh, rw, rh, rw])
self.__coordinates = np.round(coor * r).astype(np.int).tolist()
def __repr__(self):
return str(self.coord)
class LineAnnotation(object):
def __init__(self, size, lines, divisions=12):
# assert isinstance(lines, Line)
# assert isinstance(size, Line)
assert divisions > 1
assert size[0] > 1 and size[1] > 1
self.size = size
self.divisions = divisions
self.lines = lines
# binary mask with shape [H, W]
self.__mask = None
# oriental mask with shape [ndivision, H, W]
self.__oriental_mask = None
# oriental mask only with angle [H, W]
self.__angle_mask = None
# regression label [distance_regression, oriental_regrression] with shape [H, W, 2] and [H, W, ndivision]
self.__regression_label = None
# the offset of non-line pixels to line pixels
self.__offset = None
def mask(self):
if self.__mask is None:
self.__mask = line2mask(self.size, self.lines)
return self.__mask
def oriental_mask(self):
if self.__oriental_mask is None:
mask = self.mask()
oriental_mask_ = np.zeros([self.divisions] + self.size, np.uint8)
angle_mask_ = np.zeros(self.size, np.uint8)
for idx, l in enumerate(self.lines):
mask1 = mask == (idx+1)
orient = round(( l.angle() + np.pi/2 ) / (np.pi / self.divisions)) % self.divisions # 0, 1, ..., 11
assert orient >= 0 and orient < self.divisions
oriental_mask_[int(orient), mask1] = 1
angle_mask_[mask1] = orient
self.__oriental_mask = oriental_mask_
self.__angle_mask = angle_mask_
return self.__oriental_mask
def angle_mask(self):
if self.__angle_mask is None:
angle_mask = self.oriental_mask
return self.__angle_mask
def regression_label(self):
if self.__regression_label is None:
# reg_oriental_label = np.zeros(self.size+[self.divisions], dtype=np.float)
angle = np.zeros(self.size+[self.divisions]).reshape(-1, self.divisions)
reg_distance_label = np.zeros(self.size+[2], dtype=np.float)
orient = np.zeros(len(self.lines))
dist_pre_line = np.zeros([len(self.lines)]+self.size)
mask = self.mask()
for idx, l in enumerate(self.lines):
dist_pre_line[idx] = distance_transform_edt(mask != (idx+1))
orient[idx] = l.angle()
_, [indicesY, indicesX] = distance_transform_edt(mask==0, return_indices=True)
dx = indicesX - np.tile(range(self.size[1]), (self.size[0], 1))
dy = indicesY - np.tile(range(self.size[0]), (self.size[1], 1)).transpose()
theta = orient[np.argmin(dist_pre_line, 0).reshape(-1)] # [H*W]
angle[:] = [-np.pi/2 + k*np.pi / self.divisions for k in range(self.divisions)]
d_theta = theta - angle.transpose()
reg_oriental_label = d_theta.reshape([-1]+self.size).transpose()
reg_distance_label[:,:,1] = dx
reg_distance_label[:,:,0] = dy
self.__regression_label = [reg_distance_label, reg_oriental_label]
return self.__regression_label
def offset(self):
if self.__offset is None:
mask = self.__mask.astype(bool)
H, W = mask.shape
bw_dist, bw_idx = distance_transform_edt(np.logical_not(mask), return_indices=True)
tmp0 = np.arange(H).reshape(H, 1).repeat(W, 1).reshape(1, H, W)
tmp1 = np.arange(W).reshape(1, W).repeat(H, 0).reshape(1, H, W)
xys = np.concatenate((tmp0, tmp1), axis=0)
offset = bw_idx - xys
# check corectness
x, y = np.random.choice(W), np.random.choice(H)
assert np.sqrt((offset[:, y, x]**2).sum()) == bw_dist[y, x]
return self.__offset
def normed_offset(self):
mask = self.__mask.astype(bool)
bw_dist, _ = distance_transform_edt(np.logical_not(mask), return_indices=True)
bw_dist[bw_dist == 0] = 1
return self.offset() / bw_dist
def rescale(self, r):
"""
Downsample annotations
"""
assert r > 0 and (isinstance(r, int) or isinstance(r, float))
for l in self.lines:
l.rescale(rh=1/r, rw=1/r)
self.size = (np.array(self.size) / r).astype(np.int).tolist()
self.__mask = None
self.__oriental_mask = None
self.__angle_mask = None
self.__regression_label = None
def resize(self, size):
H, W = size
rH = H / self.size[0]
rW = W / self.size[1]
self.size = [H, W]
for l in self.lines:
l.rescale(rh=rH, rw=rW)
self.__mask = None
self.__oriental_mask = None
self.__angle_mask = None
self.__regression_label = None
def line2mask(size, lines):
H, W = size
mask = np.zeros((H, W), np.uint8)
for idx, l in enumerate(lines):
y0, x0, y1, x1 = l.coord
cv2.line(mask, (x0, y0), (x1, y1), (idx+1), 2)
return mask
def get_boundary_point(y, x, angle, H, W):
'''
Given point y,x with angle, return a two point in image boundary with shape [H, W]
return point:[x, y]
'''
point1 = None
point2 = None
if angle == -np.pi / 2:
point1 = (x, 0)
point2 = (x, H-1)
elif angle == 0.0:
point1 = (0, y)
point2 = (W-1, y)
else:
k = np.tan(angle)
if y-k*x >=0 and y-k*x < H: #left
if point1 == None:
point1 = (0, int(y-k*x))
elif point2 == None:
point2 = (0, int(y-k*x))
if point2 == point1: point2 = None
# print(point1, point2)
if k*(W-1)+y-k*x >= 0 and k*(W-1)+y-k*x < H: #right
if point1 == None:
point1 = (W-1, int(k*(W-1)+y-k*x))
elif point2 == None:
point2 = (W-1, int(k*(W-1)+y-k*x))
if point2 == point1: point2 = None
# print(point1, point2)
if x-y/k >= 0 and x-y/k < W: #top
if point1 == None:
point1 = (int(x-y/k), 0)
elif point2 == None:
point2 = (int(x-y/k), 0)
if point2 == point1: point2 = None
# print(point1, point2)
if x-y/k+(H-1)/k >= 0 and x-y/k+(H-1)/k < W: #bottom
if point1 == None:
point1 = (int(x-y/k+(H-1)/k), H-1)
elif point2 == None:
point2 = (int(x-y/k+(H-1)/k), H-1)
if point2 == point1: point2 = None
# print(int(x-y/k+(H-1)/k), H-1)
if point2 == None : point2 = point1
return point1, point2
# def proposal2line(y, x, angle, size, num_directions=12):
# '''
# y, x, angle are the proposal point and angle.
# '''
# assert angle >= 0 and angle < num_directions
# H, W = size
# angle = int2arc(angle, num_directions)
# point1, point2 = get_boundary_point(y, x, angle, H, W)
# if point1 == None or point2 == None:
# print(y, x, angle, H, W)
# return Line(coordinates=[point1[1], point1[0], point2[1], point2[0]])
# def proposal2coords(proposal):
# N, C, H, W = proposal.size()
# proposal = proposal.detach().cpu().numpy()
# batch_coords = []
# for b in range(N):
# indexs = np.argwhere(proposal[b, ...])
# select_num = indexs.shape[0]
# if select_num == 0:
# batch_coords.append(None)
# continue
# coords = torch.zeros((select_num, 5))
# for idx, (c, y, x) in enumerate(indexs):
# (x1, y1), (x2, y2) = get_boundary_point(y, x, int2arc(c, 12), H, W)
# coords[idx, 0] = float(x1)
# coords[idx, 1] = float(y1)
# coords[idx, 2] = float(x2)
# coords[idx, 3] = float(y2)
# coords = coords.cuda()
# batch_coords.append(coords)
# return batch_coords
# def proposal2label_mapping(proposal, label):
# N, C, H, W = proposal.size()
# proposal = proposal.detach().cpu().numpy()
# indexs = np.argwhere(proposal)
# select_num = indexs.shape[0]
# label_mapping = torch.zeros((select_num, 1))
# for idx, (n, c, y, x) in enumerate(indexs):
# label_mapping[idx, 0] = label[n, c, y, x]
# label_mapping = label_mapping.to(label)
# return label_mapping
def int2arc(k, num_directions):
'''
convert int to arc system with num_directions division.
'''
return -np.pi / 2 + np.pi / num_directions * k
def arc2int(theta, num_directions):
'''
convert arc system to int with num_directions division.
'''
return round(( theta + np.pi/2 ) / (np.pi / num_directions)) % num_directions