forked from Hanqer/deep-hough-transform
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetric.py
85 lines (65 loc) · 2.45 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import cv2
import torch
import ot
from basic_ops import Line
from chamfer_distance import ChamferDistance
cd = ChamferDistance()
def sa_metric(angle_p, angle_g):
d_angle = np.abs(angle_p - angle_g)
d_angle = min(d_angle, np.pi - d_angle)
d_angle = d_angle * 2 / np.pi
return max(0, (1 - d_angle)) ** 2
def se_metric(coord_p, coord_g, size=(400, 400)):
c_p = [(coord_p[0] + coord_p[2]) / 2, (coord_p[1] + coord_p[3]) / 2]
c_g = [(coord_g[0] + coord_g[2]) / 2, (coord_g[1] + coord_g[3]) / 2]
d_coord = np.abs(c_p[0] - c_g[0])**2 + np.abs(c_p[1] - c_g[1])**2
d_coord = np.sqrt(d_coord) / max(size[0], size[1])
return max(0, (1 - d_coord)) ** 2
def EA_metric(l_pred, l_gt, size=(400, 400)):
se = se_metric(l_pred.coord, l_gt.coord, size=size)
sa = sa_metric(l_pred.angle(), l_gt.angle())
return sa * se
def Chamfer_metric(l_pred, l_gt, size=(400, 400)):
points1 = get_points_coords(l_pred)
points2 = get_points_coords(l_gt)
#add z-axis
points1 = np.insert(points1, 0, values=0, axis=1)
points2 = np.insert(points2, 0, values=0, axis=1)
p1 = torch.from_numpy(points1).unsqueeze(0).float()
p2 = torch.from_numpy(points2).unsqueeze(0).float()
d1, d2 = cd(p1, p2)
d = (d1.mean().item() + d2.mean().item()) / 2
mmax = size[0] * size[0] + size[1] * size[1]
return 1 - d / mmax
def Emd_metric(l_pred, l_gt, size=(400, 400)):
points1 = get_points_coords(l_pred)
points2 = get_points_coords(l_gt)
M = ot.dist(points1, points2, metric='euclidean')
_, log = ot.emd([], [], M, log=True)
cost = log['cost']
return 1 - cost / np.sqrt(size[0] * size[0] + size[1] * size[1])
def get_points_coords(l):
points = []
y0, x0, y1, x1 = l.coord
dx = x1 - x0
dy = y1 - y0
length = int(np.sqrt(dx * dx + dy * dy))
for _ in range(length + 1):
points.append([int(np.round(x0)), int(np.round(y0))])
x0 += (dx / length)
y0 += (dy / length)
return points
if __name__ == "__main__":
# l1 = Line([0, 200, 400, 200])
# l2 = Line([200, 0, 200, 400])
l1 = Line([200, 0, 190, 399])
l2 = Line([190, 0, 200, 399])
print(EA_metric(l1, l2))
mask = np.zeros((400, 400))
cv2.line(mask, (5, 0), (0, 5), 255, 1)
cv2.line(mask, (394, 399), (399, 394), 255, 1)
cv2.imwrite('debug.png', mask)
cd_score = Chamfer_metric(l1, l2)
emd_score = Emd_metric(l1, l2)
print(cd_score, emd_score)