-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUtils.py
77 lines (59 loc) · 2.89 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Exported from Genes2Genes package (https://github.com/Teichlab/Genes2Genes -- MyFunctions.py)
"""
import torch
import seaborn as sb
import torch.nn as nn
import numpy as np
import pandas as pd
import time
import gpytorch
import matplotlib.pyplot as plt
import torch.distributions as td
torch.set_default_dtype(torch.float64)
def negative_log_likelihood(μ,σ,N,data):
data = torch.tensor(data)
#opt_mode = True
#if(opt_mode):
sum_term = torch.sum(((data - μ)/σ)**2.0)/2.0
return ((N/2.0)* torch.log(2*torch.tensor(np.pi))) + (N*torch.log(σ)) + sum_term
def compute_expected_Fisher_matrix(μ,σ,N):
return torch.tensor([[N/(σ**2),0],[0,(2*N)/(σ**2)]]) # depends on σ
#### ---- expected_Fisher = compute_expected_Fisher_matrix(μ_base,σ_base,N) # compute the closed form of matrix determinant instead
def I_prior(μ,σ):
R_μ = torch.tensor(15.0) # uniform prior for mean over region R_μ
R_σ = torch.tensor(3.0) # log σ has a uniform prior
return torch.log(σ) + torch.log(R_μ * R_σ) # depends on σ
def I_conway_const(d):
#if(d==2): # check withdrawn for optimisation (we know this is n=2 for Gaussian!)
c_2 = torch.tensor(5/(36 * np.sqrt(3)))
return torch.log(c_2) # a constant
def run_dist_compute_v3(data_to_model,μ_base, σ_base, print_stat=False):
if(len(data_to_model)==0):
return
μ_base = torch.tensor(μ_base); σ_base=torch.tensor(σ_base)
data = data_to_model
N = torch.tensor(len(data_to_model), requires_grad=False)
# MODEL1 - using base model to encode data
determinant_of_the_expected_fisher = (2*(N**2))/(σ_base**4) #torch.det(expected_Fisher) CLOSED FORM
L_θ = negative_log_likelihood(μ_base,σ_base,N,data) - (N*np.log(0.001)) # Accuracy of Measurement epsilon = 0.001
#I_base_model = (I_conway_const(d=2) + I_prior(μ_base,σ_base) + (0.5*torch.log(torch.det(expected_Fisher))))
I_base_model = (I_conway_const(d=2) + I_prior(μ_base,σ_base) + (0.5*torch.log(determinant_of_the_expected_fisher)))
# compute the I(data|base_model)
I_data_g_base_model = L_θ + torch.tensor(1.0)
return I_base_model, I_data_g_base_model
# random gaussian distributed data generation
def generate_random_dataset(N_datapoints, mean, variance):
μ = torch.tensor(mean); σ = torch.tensor(variance)
if(variance<0):
μ = torch.distributions.Uniform(0,10.0).rsample() # random μ sampling
σ = torch.distributions.Uniform(0.8,3.0).rsample() # random σ sampling
#σ = torch.distributions.HalfCauchy(1).rsample() # random σ sampling
μ.requires_grad = True
σ.requires_grad = True
NormalDist = torch.distributions.Normal(μ,σ)
D = []
for n in range(N_datapoints):
D.append(float(NormalDist.rsample().detach().numpy()))
#print('True params: [ μ=',μ.data.numpy(), ' , σ=', σ.data.numpy(),']' )
return D,μ,σ