-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathdata_simulation.py
55 lines (40 loc) · 1.8 KB
/
data_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import pandas as pd
from tqdm import tqdm
fgp = __import__('FaST-GP')
def make_ls_data(lengthscale, n_obs, n_sim):
X = np.random.uniform(size=(n_obs, 1), low=0, high=100)
K = fgp.SE_kernel(X, lengthscale)
I = np.eye(n_obs)
exp_tab = pd.DataFrame(index=range(n_obs))
names = ['GP{}'.format(i) for i in range(n_sim)]
true_values = pd.DataFrame(index=names, columns=['mu', 's2_t', 's2_e'])
for g in names:
mu = np.random.uniform(low=0., high=5.)
s2_t = np.exp(np.random.uniform(low=-5., high=5.))
s2_e = np.exp(np.random.uniform(low=-5., high=5.))
y = np.random.multivariate_normal(mu * np.ones((n_obs,)), (s2_t * K + s2_e * I))
exp_tab[g] = y
true_values.loc[g, 'mu'] = mu
true_values.loc[g, 's2_t'] = s2_t
true_values.loc[g, 's2_e'] = s2_e
return X, exp_tab, true_values
def make_multi_ls_data(l_min=1, l_max=100, n_obs=500, n_sim=500):
X = np.random.uniform(size=(n_obs, 1), low=0, high=100)
I = np.eye(n_obs)
exp_tab = pd.DataFrame(index=range(n_obs))
names = ['GP{}'.format(i) for i in range(n_sim)]
true_values = pd.DataFrame(index=names, columns=['l', 'mu', 's2_t', 's2_e'])
for g in tqdm(names):
l = np.exp(np.random.uniform(low=np.log(l_min), high=np.log(l_max)))
mu = np.random.uniform(low=0., high=5.)
s2_t = np.exp(np.random.uniform(low=-5., high=5.))
s2_e = np.exp(np.random.uniform(low=-5., high=5.))
K = fgp.SE_kernel(X, l)
y = np.random.multivariate_normal(mu * np.ones((n_obs,)), (s2_t * K + s2_e * I))
exp_tab[g] = y
true_values.loc[g, 'l'] = l
true_values.loc[g, 'mu'] = mu
true_values.loc[g, 's2_t'] = s2_t
true_values.loc[g, 's2_e'] = s2_e
return X, exp_tab, true_values