-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathrequests.go
902 lines (787 loc) · 27.4 KB
/
requests.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
package kmip
// This is a WIP implementation of a KMIP server. The code is mostly based on the http server in
// the golang standard library. It is functional, but not all of the features of the http server
// have been ported over yet, and some of the stuff in here still refers to http stuff.
//
// The responsibility of handling a request is broken up into 3 layers of handlers: ProtocolHandler, MessageHandler,
// and ItemHandler. Each of these handlers delegates details to the next layer. Using the http
// package as an analogy, ProtocolHandler is similar to the wire-level HTTP protocol handling in
// http.Server and http.Transport. MessageHandler parses KMIP TTLV bytes into golang request and response structs.
// ItemHandler is a bit like http.ServeMux, routing particular KMIP operations to registered handlers.
import (
"bufio"
"bytes"
"context"
"crypto/tls"
"errors"
"fmt"
"io"
"net"
"runtime"
"sync"
"sync/atomic"
"time"
"github.com/ansel1/merry"
"github.com/gemalto/flume"
"github.com/gemalto/kmip-go/kmip14"
"github.com/gemalto/kmip-go/ttlv"
"github.com/google/uuid"
)
var serverLog = flume.New("kmip_server")
// Server serves KMIP protocol connections from a net.Listener. Because KMIP is a connection-oriented
// protocol, unlike HTTP, each connection ends up being serviced by a dedicated goroutine (rather than
// each request). For each KMIP connection, requests are processed serially. The handling
// of the request is delegated to the ProtocolHandler.
//
// Limitations:
//
// This implementation is functional (it can respond to KMIP requests), but incomplete. Some of the
// connection management features of the http package haven't been ported over, and also, there is
// currently no connection-context in which to store things like an authentication or session management.
// Since HTTP is an intrinsically stateless model, it makes sense for the http package to delegate session
// management to third party packages, but for KMIP, it would makes sense for there to be some first
// class support for a connection context.
//
// This package also only handles the binary TTLV encoding for now. It may make sense for this
// server to detect or support the XML and JSON encodings as well. It may also makes sense to support
// KMIP requests over HTTP, perhaps by adapting ProtocolHandler to an http.Handler or something.
type Server struct {
Handler ProtocolHandler
mu sync.Mutex
listeners map[*net.Listener]struct{}
inShutdown int32 // accessed atomically (non-zero means we're in Shutdown)
}
// ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe,
// and ListenAndServeTLS methods after a call to Shutdown or Close.
var ErrServerClosed = errors.New("http: Server closed")
// Serve accepts incoming connections on the Listener l, creating a
// new service goroutine for each. The service goroutines read requests and
// then call srv.MessageHandler to reply to them.
//
// Serve always returns a non-nil error and closes l.
// After Shutdown or Close, the returned error is ErrServerClosed.
func (srv *Server) Serve(l net.Listener) error {
//if fn := testHookServerServe; fn != nil {
// fn(srv, l) // call hook with unwrapped listener
//}
l = &onceCloseListener{Listener: l}
defer l.Close()
if !srv.trackListener(&l, true) {
return ErrServerClosed
}
defer srv.trackListener(&l, false)
var tempDelay time.Duration // how long to sleep on accept failure
baseCtx := context.Background() // base is always background, per Issue 16220
ctx := baseCtx
// ctx := context.WithValue(baseCtx, ServerContextKey, srv)
for {
rw, e := l.Accept()
if e != nil {
if srv.shuttingDown() {
return ErrServerClosed
}
if ne, ok := e.(net.Error); ok && ne.Temporary() {
if tempDelay == 0 {
tempDelay = 5 * time.Millisecond
} else {
tempDelay *= 2
}
if max := 1 * time.Second; tempDelay > max {
tempDelay = max
}
// srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
time.Sleep(tempDelay)
continue
}
return e
}
tempDelay = 0
c := &conn{server: srv, rwc: rw}
// c.setState(c.rwc, StateNew) // before Serve can return
go c.serve(ctx)
}
}
// Close immediately closes all active net.Listeners and any
// connections in state StateNew, StateActive, or StateIdle. For a
// graceful shutdown, use Shutdown.
//
// Close does not attempt to close (and does not even know about)
// any hijacked connections, such as WebSockets.
//
// Close returns any error returned from closing the Server's
// underlying Listener(s).
func (srv *Server) Close() error {
atomic.StoreInt32(&srv.inShutdown, 1)
srv.mu.Lock()
defer srv.mu.Unlock()
// srv.closeDoneChanLocked()
err := srv.closeListenersLocked()
//for c := range srv.activeConn {
// c.rwc.Close()
// delete(srv.activeConn, c)
//}
return err
}
// shutdownPollInterval is how often we poll for quiescence
// during Server.Shutdown. This is lower during tests, to
// speed up tests.
// Ideally we could find a solution that doesn't involve polling,
// but which also doesn't have a high runtime cost (and doesn't
// involve any contentious mutexes), but that is left as an
// exercise for the reader.
var shutdownPollInterval = 500 * time.Millisecond
// Shutdown gracefully shuts down the server without interrupting any
// active connections. Shutdown works by first closing all open
// listeners, then closing all idle connections, and then waiting
// indefinitely for connections to return to idle and then shut down.
// If the provided context expires before the shutdown is complete,
// Shutdown returns the context's error, otherwise it returns any
// error returned from closing the Server's underlying Listener(s).
//
// When Shutdown is called, Serve, ListenAndServe, and
// ListenAndServeTLS immediately return ErrServerClosed. Make sure the
// program doesn't exit and waits instead for Shutdown to return.
//
// Shutdown does not attempt to close nor wait for hijacked
// connections such as WebSockets. The caller of Shutdown should
// separately notify such long-lived connections of shutdown and wait
// for them to close, if desired. See RegisterOnShutdown for a way to
// register shutdown notification functions.
//
// Once Shutdown has been called on a server, it may not be reused;
// future calls to methods such as Serve will return ErrServerClosed.
func (srv *Server) Shutdown(ctx context.Context) error {
atomic.StoreInt32(&srv.inShutdown, 1)
srv.mu.Lock()
lnerr := srv.closeListenersLocked()
//srv.closeDoneChanLocked()
//for _, f := range srv.onShutdown {
// go f()
//}
srv.mu.Unlock()
ticker := time.NewTicker(shutdownPollInterval)
defer ticker.Stop()
return lnerr
//for {
// if srv.closeIdleConns() {
// return lnerr
// }
// select {
// case <-ctx.Done():
// return ctx.Err()
// case <-ticker.C:
// }
//}
}
func (srv *Server) closeListenersLocked() error {
var err error
for ln := range srv.listeners {
if cerr := (*ln).Close(); cerr != nil && err == nil {
err = cerr
}
delete(srv.listeners, ln)
}
return err
}
// trackListener adds or removes a net.Listener to the set of tracked
// listeners.
//
// We store a pointer to interface in the map set, in case the
// net.Listener is not comparable. This is safe because we only call
// trackListener via Serve and can track+defer untrack the same
// pointer to local variable there. We never need to compare a
// Listener from another caller.
//
// It reports whether the server is still up (not Shutdown or Closed).
func (srv *Server) trackListener(ln *net.Listener, add bool) bool {
srv.mu.Lock()
defer srv.mu.Unlock()
if srv.listeners == nil {
srv.listeners = make(map[*net.Listener]struct{})
}
if add {
if srv.shuttingDown() {
return false
}
srv.listeners[ln] = struct{}{}
} else {
delete(srv.listeners, ln)
}
return true
}
func (srv *Server) shuttingDown() bool {
return atomic.LoadInt32(&srv.inShutdown) != 0
}
type conn struct {
rwc net.Conn
remoteAddr string
localAddr string
tlsState *tls.ConnectionState
// cancelCtx cancels the connection-level context.
cancelCtx context.CancelFunc
// bufr reads from rwc.
bufr *bufio.Reader
dec *ttlv.Decoder
server *Server
}
func (c *conn) close() {
// TODO: http package has a buffered writer on the conn too, which is flushed here
_ = c.rwc.Close()
}
// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
ctx = flume.WithLogger(ctx, serverLog)
ctx, cancelCtx := context.WithCancel(ctx)
c.cancelCtx = cancelCtx
c.remoteAddr = c.rwc.RemoteAddr().String()
c.localAddr = c.rwc.LocalAddr().String()
// ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
defer func() {
if err := recover(); err != nil {
// TODO: logging support
// if err := recover(); err != nil && err != ErrAbortHandler {
const size = 64 << 10
buf := make([]byte, size)
buf = buf[:runtime.Stack(buf, false)]
if e, ok := err.(error); ok {
fmt.Printf("kmip: panic serving %v: %v\n%s", c.remoteAddr, Details(e), buf)
} else {
fmt.Printf("kmip: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
}
// c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
}
cancelCtx()
// if !c.hijacked() {
c.close()
// c.setState(c.rwc, StateClosed)
//}
}()
if tlsConn, ok := c.rwc.(*tls.Conn); ok {
//if d := c.server.ReadTimeout; d != 0 {
// c.rwc.SetReadDeadline(time.Now().Add(d))
//}
//if d := c.server.WriteTimeout; d != 0 {
// c.rwc.SetWriteDeadline(time.Now().Add(d))
//}
if err := tlsConn.Handshake(); err != nil {
// TODO: logging support
fmt.Printf("kmip: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
// c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
return
}
c.tlsState = new(tls.ConnectionState)
*c.tlsState = tlsConn.ConnectionState()
//if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
// if fn := c.server.TLSNextProto[proto]; fn != nil {
// h := initNPNRequest{tlsConn, serverHandler{c.server}}
// fn(c.server, tlsConn, h)
// }
// return
//}
}
// TODO: do we really need instance pooling here? We expect KMIP connections to be long lasting
c.dec = ttlv.NewDecoder(c.rwc)
c.bufr = bufio.NewReader(c.rwc)
// c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
for {
w, err := c.readRequest(ctx)
//if c.r.remain != c.server.initialReadLimitSize() {
// If we read any bytes off the wire, we're active.
//c.setState(c.rwc, StateActive)
//}
if err != nil {
if merry.Is(err, io.EOF) {
fmt.Println("client closed connection")
return
}
// TODO: do something with this error
panic(err)
//const errorHeaders= "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n"
//
//if err == errTooLarge {
// // Their HTTP client may or may not be
// // able to read this if we're
// // responding to them and hanging up
// // while they're still writing their
// // request. Undefined behavior.
// const publicErr= "431 Request Header Fields Too Large"
// fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
// c.closeWriteAndWait()
// return
//}
//if isCommonNetReadError(err) {
// return // don't reply
//}
//
//publicErr := "400 Bad Request"
//if v, ok := err.(badRequestError); ok {
// publicErr = publicErr + ": " + string(v)
//}
//
//fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
//return
}
// Expect 100 Continue support
//req := w.req
//if req.expectsContinue() {
// if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
// // Wrap the Body reader with one that replies on the connection
// req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
// }
//} else if req.Header.get("Expect") != "" {
// w.sendExpectationFailed()
// return
//}
// c.curReq.Store(w)
//if requestBodyRemains(req.Body) {
// registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
//} else {
// w.conn.r.startBackgroundRead()
//}
// HTTP cannot have multiple simultaneous active requests.[*]
// Until the server replies to this request, it can't read another,
// so we might as well run the handler in this goroutine.
// [*] Not strictly true: HTTP pipelining. We could let them all process
// in parallel even if their responses need to be serialized.
// But we're not going to implement HTTP pipelining because it
// was never deployed in the wild and the answer is HTTP/2.
h := c.server.Handler
if h == nil {
h = DefaultProtocolHandler
}
// var resp ResponseMessage
// err = c.server.MessageHandler.Handle(ctx, w, &resp)
// TODO: this cancelCtx() was created at the connection level, not the request level. Need to
// figure out how to handle connection vs request timeouts and cancels.
// cancelCtx()
// TODO: use recycled buffered writer
writer := bufio.NewWriter(c.rwc)
h.ServeKMIP(ctx, w, writer)
err = writer.Flush()
if err != nil {
// TODO: handle error
panic(err)
}
//serverHandler{c.server}.ServeHTTP(w, w.req)
//w.cancelCtx()
//if c.hijacked() {
// return
//}
//w.finishRequest()
//if !w.shouldReuseConnection() {
// if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
// c.closeWriteAndWait()
// }
// return
//}
//c.setState(c.rwc, StateIdle)
//c.curReq.Store((*response)(nil))
//if !w.conn.server.doKeepAlives() {
// // We're in shutdown mode. We might've replied
// // to the user without "Connection: close" and
// // they might think they can send another
// // request, but such is life with HTTP/1.1.
// return
//}
//
//if d := c.server.idleTimeout(); d != 0 {
// c.rwc.SetReadDeadline(time.Now().Add(d))
// if _, err := c.bufr.Peek(4); err != nil {
// return
// }
//}
//c.rwc.SetReadDeadline(time.Time{})
}
}
// Read next request from connection.
func (c *conn) readRequest(ctx context.Context) (w *Request, err error) {
//if c.hijacked() {
// return nil, ErrHijacked
//}
//var (
// wholeReqDeadline time.Time // or zero if none
// hdrDeadline time.Time // or zero if none
//)
//t0 := time.Now()
//if d := c.server.readHeaderTimeout(); d != 0 {
// hdrDeadline = t0.Add(d)
//}
//if d := c.server.ReadTimeout; d != 0 {
// wholeReqDeadline = t0.Add(d)
//}
//c.rwc.SetReadDeadline(hdrDeadline)
//if d := c.server.WriteTimeout; d != 0 {
// defer func() {
// c.rwc.SetWriteDeadline(time.Now().Add(d))
// }()
//}
//c.r.setReadLimit(c.server.initialReadLimitSize())
//if c.lastMethod == "POST" {
// RFC 7230 section 3 tolerance for old buggy clients.
//peek, _ := c.bufr.Peek(4) // ReadRequest will get err below
//c.bufr.Discard(numLeadingCRorLF(peek))
//}
ttlvVal, err := c.dec.NextTTLV()
if err != nil {
return nil, err
}
//if err != nil {
//if c.r.hitReadLimit() {
// return nil, errTooLarge
//}
//}
// TODO: use pooling to recycle requests?
req := &Request{
TTLV: ttlvVal,
RemoteAddr: c.remoteAddr,
LocalAddr: c.localAddr,
TLS: c.tlsState,
}
// c.r.setInfiniteReadLimit()
// Adjust the read deadline if necessary.
//if !hdrDeadline.Equal(wholeReqDeadline) {
// c.rwc.SetReadDeadline(wholeReqDeadline)
//}
return req, nil
}
// Request represents a KMIP request.
type Request struct {
// TTLV will hold the entire body of the request.
TTLV ttlv.TTLV
Message *RequestMessage
CurrentItem *RequestBatchItem
DisallowExtraValues bool
// TLS holds the TLS state of the connection this request was received on.
TLS *tls.ConnectionState
RemoteAddr string
LocalAddr string
IDPlaceholder string
decoder *ttlv.Decoder
}
// coerceToTTLV attempts to coerce an interface value to TTLV.
// In most production scenarios, this is intended to be used in
// places where the value is already a TTLV, and just needs to be
// type cast. If v is not TTLV, it will be marshaled. This latter
// behavior is slow, so it should be used only in tests.
func coerceToTTLV(v interface{}) (ttlv.TTLV, error) {
switch t := v.(type) {
case nil:
return nil, nil
case ttlv.TTLV:
return t, nil
default:
return ttlv.Marshal(v)
}
}
// Unmarshal unmarshals ttlv into structures. Handlers should prefer this
// method over than their own Decoders or Unmarshal(). This method
// enforces rules about whether extra fields are allowed, and reuses
// buffers for efficiency.
func (r *Request) Unmarshal(ttlv ttlv.TTLV, into interface{}) error {
if len(ttlv) == 0 {
return nil
}
r.decoder.Reset(bytes.NewReader(ttlv))
return r.decoder.Decode(into)
}
func (r *Request) DecodePayload(v interface{}) error {
if r.CurrentItem == nil {
return nil
}
ttlvVal, err := coerceToTTLV(r.CurrentItem.RequestPayload)
if err != nil {
return err
}
return r.Unmarshal(ttlvVal, v)
}
// onceCloseListener wraps a net.Listener, protecting it from
// multiple Close calls.
type onceCloseListener struct {
net.Listener
once sync.Once
closeErr error
}
func (oc *onceCloseListener) Close() error {
oc.once.Do(oc.close)
return oc.closeErr
}
func (oc *onceCloseListener) close() { oc.closeErr = oc.Listener.Close() }
type ResponseWriter interface {
io.Writer
}
// ProtocolHandler is responsible for handling raw requests read off the wire. The
// *Request object will only have TTLV field populated. The response should
// be written directly to the ResponseWriter.
//
// The default implemention of ProtocolHandler is StandardProtocolHandler.
type ProtocolHandler interface {
ServeKMIP(ctx context.Context, req *Request, resp ResponseWriter)
}
// MessageHandler handles KMIP requests which have already be decoded. The *Request
// object's Message field will be populated from the decoded TTLV. The *Response
// object will always be non-nil, and its ResponseHeader will be populated. The
// MessageHandler usually shouldn't modify the ResponseHeader: the ProtocolHandler
// is responsible for the header. The MessageHandler just needs to populate
// the response batch items.
//
// The default implementation of MessageHandler is OperationMux.
type MessageHandler interface {
HandleMessage(ctx context.Context, req *Request, resp *Response)
}
// ItemHandler handles a single batch item in a KMIP request. The *Request
// object's CurrentItem field will be populated with item to be handled.
type ItemHandler interface {
HandleItem(ctx context.Context, req *Request) (item *ResponseBatchItem, err error)
}
type ProtocolHandlerFunc func(context.Context, *Request, ResponseWriter)
func (f ProtocolHandlerFunc) ServeKMIP(ctx context.Context, r *Request, w ResponseWriter) {
f(ctx, r, w)
}
type MessageHandlerFunc func(context.Context, *Request, *Response)
func (f MessageHandlerFunc) HandleMessage(ctx context.Context, req *Request, resp *Response) {
f(ctx, req, resp)
}
type ItemHandlerFunc func(context.Context, *Request) (*ResponseBatchItem, error)
func (f ItemHandlerFunc) HandleItem(ctx context.Context, req *Request) (item *ResponseBatchItem, err error) {
return f(ctx, req)
}
var DefaultProtocolHandler = &StandardProtocolHandler{
MessageHandler: DefaultOperationMux,
ProtocolVersion: ProtocolVersion{
ProtocolVersionMajor: 1,
ProtocolVersionMinor: 4,
},
}
var DefaultOperationMux = &OperationMux{}
// StandardProtocolHandler is the default ProtocolHandler implementation. It
// handles decoding the request and encoding the response, as well as protocol
// level tasks like version negotiation and correlation values.
//
// It delegates handling of the request to a MessageHandler.
type StandardProtocolHandler struct {
ProtocolVersion ProtocolVersion
MessageHandler MessageHandler
LogTraffic bool
}
func (h *StandardProtocolHandler) parseMessage(ctx context.Context, req *Request) error {
ttlvV := req.TTLV
if err := ttlvV.Valid(); err != nil {
return merry.Prepend(err, "invalid ttlv")
}
if ttlvV.Tag() != kmip14.TagRequestMessage {
return merry.Errorf("invalid tag: expected RequestMessage, was %s", ttlvV.Tag().String())
}
var message RequestMessage
err := ttlv.Unmarshal(ttlvV, &message)
if err != nil {
return merry.Prepend(err, "failed to parse message")
}
req.Message = &message
return nil
}
var responsePool = sync.Pool{}
type Response struct {
ResponseMessage
buf bytes.Buffer
enc *ttlv.Encoder
}
func newResponse() *Response {
v := responsePool.Get()
if v != nil {
r := v.(*Response)
r.reset()
return r
}
r := Response{}
r.enc = ttlv.NewEncoder(&r.buf)
return &r
}
func releaseResponse(r *Response) {
responsePool.Put(r)
}
func (r *Response) reset() {
r.BatchItem = nil
r.ResponseMessage = ResponseMessage{}
r.buf.Reset()
}
func (r *Response) Bytes() []byte {
r.buf.Reset()
err := r.enc.Encode(&r.ResponseMessage)
if err != nil {
panic(err)
}
return r.buf.Bytes()
}
func (r *Response) errorResponse(reason kmip14.ResultReason, msg string) {
r.BatchItem = []ResponseBatchItem{
{
ResultStatus: kmip14.ResultStatusOperationFailed,
ResultReason: reason,
ResultMessage: msg,
},
}
}
func (h *StandardProtocolHandler) handleRequest(ctx context.Context, req *Request, resp *Response) (logger flume.Logger) {
// create a server correlation value, which is like a unique transaction ID
scv := uuid.New().String()
// create a logger for the transaction, seeded with the scv
logger = flume.FromContext(ctx).With("scv", scv)
// attach the logger to the context, so it is available to the handling chain
ctx = flume.WithLogger(ctx, logger)
// TODO: it's unclear how the full protocol negogiation is supposed to work
// should server be pinned to a particular version? Or should we try and negogiate a common version?
resp.ResponseHeader.ProtocolVersion = h.ProtocolVersion
resp.ResponseHeader.TimeStamp = time.Now()
resp.ResponseHeader.BatchCount = len(resp.BatchItem)
resp.ResponseHeader.ServerCorrelationValue = scv
if err := h.parseMessage(ctx, req); err != nil {
resp.errorResponse(kmip14.ResultReasonInvalidMessage, err.Error())
return
}
ccv := req.Message.RequestHeader.ClientCorrelationValue
// add the client correlation value to the logging context. This value uniquely
// identifies the client, and is supposed to be included in server logs
logger = logger.With("ccv", ccv)
ctx = flume.WithLogger(ctx, logger)
resp.ResponseHeader.ClientCorrelationValue = req.Message.RequestHeader.ClientCorrelationValue
clientMajorVersion := req.Message.RequestHeader.ProtocolVersion.ProtocolVersionMajor
if clientMajorVersion != h.ProtocolVersion.ProtocolVersionMajor {
resp.errorResponse(kmip14.ResultReasonInvalidMessage,
fmt.Sprintf("mismatched protocol versions, client: %d, server: %d", clientMajorVersion, h.ProtocolVersion.ProtocolVersionMajor))
return
}
// set a flag hinting to handlers that extra fields should not be tolerated when
// unmarshaling payloads. According to spec, if server and client protocol version
// minor versions match, then extra fields should cause an error. Not sure how to enforce
// this in this higher level handler, since we (the protocol/message handlers) don't unmarshal the payload.
// That's done by a particular item handler.
req.DisallowExtraValues = req.Message.RequestHeader.ProtocolVersion.ProtocolVersionMinor == h.ProtocolVersion.ProtocolVersionMinor
req.decoder = ttlv.NewDecoder(nil)
req.decoder.DisallowExtraValues = req.DisallowExtraValues
h.MessageHandler.HandleMessage(ctx, req, resp)
resp.ResponseHeader.BatchCount = len(resp.BatchItem)
respTTLV := resp.Bytes()
if req.Message.RequestHeader.MaximumResponseSize > 0 && len(respTTLV) > req.Message.RequestHeader.MaximumResponseSize {
// new error resp
resp.errorResponse(kmip14.ResultReasonResponseTooLarge, "")
respTTLV = resp.Bytes()
}
return
}
func (h *StandardProtocolHandler) ServeKMIP(ctx context.Context, req *Request, writer ResponseWriter) {
// we precreate the response object and pass it down to handlers, because due
// the guidance in the spec on the Maximum Response Size, it will be necessary
// for handlers to recalculate the response size after each batch item, which
// requires re-encoding the entire response. Seems inefficient.
resp := newResponse()
logger := h.handleRequest(ctx, req, resp)
var err error
if h.LogTraffic {
ttlvV := resp.Bytes()
logger.Debug("traffic log", "request", req.TTLV.String(), "response", ttlv.TTLV(ttlvV).String())
_, err = writer.Write(ttlvV)
} else {
_, err = resp.buf.WriteTo(writer)
}
if err != nil {
panic(err)
}
releaseResponse(resp)
}
func (r *ResponseMessage) addFailure(reason kmip14.ResultReason, msg string) {
if msg == "" {
msg = reason.String()
}
r.BatchItem = append(r.BatchItem, ResponseBatchItem{
ResultStatus: kmip14.ResultStatusOperationFailed,
ResultReason: reason,
ResultMessage: msg,
})
}
// OperationMux is an implementation of MessageHandler which handles each batch item in the request
// by routing the operation to an ItemHandler. The ItemHandler performs the operation, and returns
// either a *ResponseBatchItem, or an error. If it returns an error, the error is passed to
// ErrorHandler, which converts it into a error *ResponseBatchItem. OperationMux handles correlating
// items in the request to items in the response.
type OperationMux struct {
mu sync.RWMutex
handlers map[kmip14.Operation]ItemHandler
// ErrorHandler defaults to the DefaultErrorHandler.
ErrorHandler ErrorHandler
}
// ErrorHandler converts a golang error into a *ResponseBatchItem (which should hold information
// about the error to convey back to the client).
type ErrorHandler interface {
HandleError(err error) *ResponseBatchItem
}
type ErrorHandlerFunc func(err error) *ResponseBatchItem
func (f ErrorHandlerFunc) HandleError(err error) *ResponseBatchItem {
return f(err)
}
// DefaultErrorHandler tries to map errors to ResultReasons.
var DefaultErrorHandler = ErrorHandlerFunc(func(err error) *ResponseBatchItem {
reason := GetResultReason(err)
if reason == kmip14.ResultReason(0) {
// error not handled
return nil
}
// prefer user message, but fall back on message
msg := merry.UserMessage(err)
if msg == "" {
msg = merry.Message(err)
}
return newFailedResponseBatchItem(reason, msg)
})
func newFailedResponseBatchItem(reason kmip14.ResultReason, msg string) *ResponseBatchItem {
return &ResponseBatchItem{
ResultStatus: kmip14.ResultStatusOperationFailed,
ResultReason: reason,
ResultMessage: msg,
}
}
func (m *OperationMux) bi(ctx context.Context, req *Request, reqItem *RequestBatchItem) *ResponseBatchItem {
req.CurrentItem = reqItem
h := m.handlerForOp(reqItem.Operation)
if h == nil {
return newFailedResponseBatchItem(kmip14.ResultReasonOperationNotSupported, "")
}
resp, err := h.HandleItem(ctx, req)
if err != nil {
eh := m.ErrorHandler
if eh == nil {
eh = DefaultErrorHandler
}
resp = eh.HandleError(err)
if resp == nil {
// errors which don't convert just panic
panic(err)
}
}
return resp
}
func (m *OperationMux) HandleMessage(ctx context.Context, req *Request, resp *Response) {
for i := range req.Message.BatchItem {
reqItem := &req.Message.BatchItem[i]
respItem := m.bi(ctx, req, reqItem)
respItem.Operation = reqItem.Operation
respItem.UniqueBatchItemID = reqItem.UniqueBatchItemID
resp.BatchItem = append(resp.BatchItem, *respItem)
}
}
func (m *OperationMux) Handle(op kmip14.Operation, handler ItemHandler) {
m.mu.Lock()
defer m.mu.Unlock()
if m.handlers == nil {
m.handlers = map[kmip14.Operation]ItemHandler{}
}
m.handlers[op] = handler
}
func (m *OperationMux) handlerForOp(op kmip14.Operation) ItemHandler {
m.mu.RLock()
defer m.mu.RUnlock()
return m.handlers[op]
}
func (m *OperationMux) missingHandler(ctx context.Context, req *Request, resp *ResponseMessage) error {
resp.addFailure(kmip14.ResultReasonOperationNotSupported, "")
return nil
}