-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathasdl.py
447 lines (371 loc) · 11.7 KB
/
asdl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# -------------------------------------------------------------------------------
# Parser for ASDL [1] definition files. Reads in an ASDL description and parses
# it into an AST that describes it.
#
# The EBNF we're parsing here: Figure 1 of the paper [1]. Extended to support
# modules and attributes after a product. Words starting with Capital letters
# are terminals. Literal tokens are in "double quotes". Others are
# non-terminals. Id is either TokenId or ConstructorId.
#
# module ::= "module" Id "{" [definitions] "}"
# definitions ::= { TypeId "=" type }
# type ::= product | sum
# product ::= fields ["attributes" fields]
# fields ::= "(" { field, "," } field ")"
# field ::= TypeId ["?" | "*"] [Id]
# sum ::= constructor { "|" constructor } ["attributes" fields]
# constructor ::= ConstructorId [fields]
#
# [1] "The Zephyr Abstract Syntax Description Language" by Wang, et. al. See
# http://asdl.sourceforge.net/
# -------------------------------------------------------------------------------
from collections import namedtuple
import re
from enum import Enum
from typing import Union, Any, NamedTuple
__all__ = [
'builtin_types',
'parse',
'AST',
'Module',
'Type',
'Constructor',
'Field',
'Sum',
'Product',
'VisitorBase',
'Check',
'check'
]
# The following classes define nodes into which the ASDL description is parsed.
# Note: this is a "meta-AST". ASDL files (such as Python.asdl) describe the AST
# structure used by a programming language. But ASDL files themselves need to be
# parsed. This module parses ASDL files and uses a simple AST to represent them.
# See the EBNF at the top of the file to understand the logical connection
# between the various node types.
builtin_types = { 'identifier', 'string', 'int', 'constant', 'bool', 'conversion_flag' }
class AST:
def __repr__( self ) -> str:
raise NotImplementedError
class Module( AST ):
name: str
dfns: str
types: dict[ str: str ]
def __init__( self, name, dfns ) -> None:
self.name = name
self.dfns = dfns
self.types = { type.name: type.value for type in dfns }
def __repr__( self ) -> str:
return f'Module({self.name}, {self.dfns})'
class Type( AST ):
name: str
value: Any
def __init__( self, name: str, value: Any ) -> None:
self.name = name
self.value = value
def __repr__( self ) -> str:
return f'Type({self.name}, {self.value})'
class Constructor( AST ):
def __init__( self, name: str, fields: list[ str ] = None ) -> None:
self.name = name
self.fields = fields or [ ]
def __repr__( self ) -> str:
return f'Constructor({self.name}, {self.fields})'
class Field( AST ):
def __init__( self, type, name = None, seq = False, opt = False ) -> None:
self.type = type
self.name = name
self.seq = seq
self.opt = opt
def __str__( self ) -> str:
if self.seq:
extra = "*"
elif self.opt:
extra = "?"
else:
extra = ""
return "{}{} {}".format( self.type, extra, self.name )
def __repr__( self ) -> str:
if self.seq:
extra = ", seq=True"
elif self.opt:
extra = ", opt=True"
else:
extra = ""
if self.name is None:
return 'Field({0.type}{1})'.format( self, extra )
else:
return 'Field({0.type}, {0.name}{1})'.format( self, extra )
class Sum( AST ):
def __init__( self, types, attributes = None ) -> None:
self.types = types
self.attributes = attributes or [ ]
def __repr__( self ) -> str:
if self.attributes:
return 'Sum({0.types}, {0.attributes})'.format( self )
else:
return 'Sum({0.types})'.format( self )
class Product( AST ):
def __init__( self, fields, attributes: list = None ) -> None:
self.fields = fields
self.attributes = attributes or [ ]
def __repr__( self ) -> str:
if self.attributes:
return 'Product({self.fields}, {self.attributes})'
else:
return 'Product({self.fields})'
# A generic visitor for the meta-AST that describes ASDL. This can be used by
# emitters. Note that this visitor does not provide a generic visit method, so a
# subclass needs to define visit methods from visitModule to as deep as the
# interesting node.
# We also define a Check visitor that makes sure the parsed ASDL is well-formed.
class VisitorBase( object ):
"""Generic tree visitor for ASTs."""
def __init__( self ) -> None:
self.cache = { }
def visit( self, obj, *args ) -> None:
klass = obj.__class__
meth = self.cache.get( klass )
if meth is None:
methname = "visit" + klass.__name__
meth = getattr( self, methname, None )
self.cache[ klass ] = meth
if meth:
try:
meth( obj, *args )
except Exception as e:
print( "Error visiting %r: %s" % (obj, e) )
raise
class Check( VisitorBase ):
"""A visitor that checks a parsed ASDL tree for correctness.
Errors are printed and accumulated.
"""
def __init__( self ) -> None:
super( Check, self ).__init__()
self.cons = { }
self.errors = 0
self.types = { }
def visitModule( self, mod ) -> None:
for dfn in mod.dfns:
self.visit( dfn )
def visitType( self, type ) -> None:
self.visit( type.value, str( type.name ) )
def visitSum( self, sum, name ) -> None:
for t in sum.types:
self.visit( t, name )
def visitConstructor( self, cons, name ) -> None:
key = str( cons.name )
conflict = self.cons.get( key )
if conflict is None:
self.cons[ key ] = name
else:
print( 'Redefinition of constructor {}'.format( key ) )
print( 'Defined in {} and {}'.format( conflict, name ) )
self.errors += 1
for f in cons.fields:
self.visit( f, key )
def visitField( self, field, name ) -> None:
key = str( field.type )
l = self.types.setdefault( key, [ ] )
l.append( name )
def visitProduct( self, prod, name ) -> None:
for f in prod.fields:
self.visit( f, name )
def check( mod ):
"""Check the parsed ASDL tree for correctness.
Return True if success. For failure, the errors are printed out and False
is returned.
"""
v = Check()
v.visit( mod )
for t in v.types:
if t not in mod.types and not t in builtin_types:
v.errors += 1
uses = ", ".join( v.types[ t ] )
print( 'Undefined type {}, used in {}'.format( t, uses ) )
return not v.errors
# The ASDL parser itself comes next. The only interesting external interface
# here is the top-level parse function.
def parse( filename ):
"""Parse ASDL from the given file and return a Module node describing it."""
with open( filename ) as f:
parser = ASDLParser()
return parser.parse( f.read() )
# Types for describing tokens in an ASDL specification.
class TokenKind(Enum):
"""TokenKind is provides a scope for enumerated token kinds."""
ConstructorId = 0
TypeId = 1
Equals = 2
Comma = 3
Question = 4
Pipe = 5
Asterisk = 6
LParen = 7
RParen = 8
LBrace = 9
RBrace = 10
operator_table = {
'=': Equals,
',': Comma,
'?': Question,
'|': Pipe,
'(': LParen,
')': RParen,
'*': Asterisk,
'{': LBrace,
'}': RBrace
}
class Token(NamedTuple):
kind: TokenKind
value: Any
lineno: str
class ASDLSyntaxError( Exception ):
def __init__( self, msg, lineno = None ) -> None:
self.msg = msg
self.lineno = lineno or '<unknown>'
def __str__( self ) -> str:
return f'Syntax error on line {self.lineno}: {self.msg}'
def tokenize_asdl( buf ) -> None:
"""Tokenize the given buffer. Yield Token objects."""
for lineno, line in enumerate( buf.splitlines(), 1 ):
for m in re.finditer( r'\s*(\w+|--.*|.)', line.strip() ):
c = m.group( 1 )
if c[ 0 ].isalpha():
# Some kind of identifier
if c[ 0 ].isupper():
yield Token( TokenKind.ConstructorId, c, lineno )
else:
yield Token( TokenKind.TypeId, c, lineno )
elif c[ :2 ] == '--':
# Comment
break
else:
# Operators
try:
op_kind = TokenKind.operator_table[ c ]
except KeyError:
raise ASDLSyntaxError( 'Invalid operator %s' % c, lineno )
yield Token( op_kind, c, lineno )
class ASDLParser:
"""Parser for ASDL files.
Create, then call the parse method on a buffer containing ASDL.
This is a simple recursive descent parser that uses tokenize_asdl for the
lexing.
"""
def __init__( self ) -> None:
self._tokenizer = None
self.cur_token = None
def parse( self, buf ):
"""Parse the ASDL in the buffer and return an AST with a Module root.
"""
self._tokenizer = tokenize_asdl( buf )
self._advance()
return self._parse_module()
def _parse_module( self ):
if self._at_keyword( 'module' ):
self._advance()
else:
raise ASDLSyntaxError(
'Expected "module" (found {})'.format( self.cur_token.value ),
self.cur_token.lineno
)
name = self._match( self._id_kinds )
self._match( TokenKind.LBrace )
defs = self._parse_definitions()
self._match( TokenKind.RBrace )
return Module( name, defs )
def _parse_definitions( self ):
defs = [ ]
while self.cur_token.kind == TokenKind.TypeId:
typename = self._advance()
self._match( TokenKind.Equals )
type = self._parse_type()
defs.append( Type( typename, type ) )
return defs
def _parse_type( self ):
if self.cur_token.kind == TokenKind.LParen:
# If we see a (, it's a product
return self._parse_product()
else:
# Otherwise it's a sum. Look for ConstructorId
sumlist = [ Constructor(
self._match( TokenKind.ConstructorId ),
self._parse_optional_fields()
) ]
while self.cur_token.kind == TokenKind.Pipe:
# More constructors
self._advance()
sumlist.append(
Constructor(
self._match( TokenKind.ConstructorId ),
self._parse_optional_fields()
)
)
return Sum( sumlist, self._parse_optional_attributes() )
def _parse_product( self ):
return Product( self._parse_fields(), self._parse_optional_attributes() )
def _parse_fields( self ):
fields = [ ]
self._match( TokenKind.LParen )
while self.cur_token.kind == TokenKind.TypeId:
typename = self._advance()
is_seq, is_opt = self._parse_optional_field_quantifier()
id = (self._advance() if self.cur_token.kind in self._id_kinds
else None)
fields.append( Field( typename, id, seq=is_seq, opt=is_opt ) )
if self.cur_token.kind == TokenKind.RParen:
break
elif self.cur_token.kind == TokenKind.Comma:
self._advance()
self._match( TokenKind.RParen )
return fields
def _parse_optional_fields( self ):
if self.cur_token.kind == TokenKind.LParen:
return self._parse_fields()
else:
return None
def _parse_optional_attributes( self ):
if self._at_keyword( 'attributes' ):
self._advance()
return self._parse_fields()
else:
return None
def _parse_optional_field_quantifier( self ):
is_seq, is_opt = False, False
if self.cur_token.kind == TokenKind.Question:
is_opt = True
self._advance()
if self.cur_token.kind == TokenKind.Asterisk:
is_seq = True
self._advance()
return is_seq, is_opt
def _advance( self ):
""" Return the value of the current token and read the next one into
self.cur_token.
"""
cur_val = None if self.cur_token is None else self.cur_token.value
try:
self.cur_token = next( self._tokenizer )
except StopIteration:
self.cur_token = None
return cur_val
_id_kinds = (TokenKind.ConstructorId, TokenKind.TypeId)
def _match( self, kind: Union[ tuple[TokenKind], TokenKind ] ):
"""The 'match' primitive of RD parsers.
* Verifies that the current token is of the given kind (kind can
be a tuple, in which the kind must match one of its members).
* Returns the value of the current token
* Reads in the next token
"""
if isinstance( kind, tuple ) and self.cur_token.kind in kind or self.cur_token.kind == kind:
value = self.cur_token.value
self._advance()
return value
else:
raise ASDLSyntaxError(
'Unmatched {} (found {})'.format( kind, self.cur_token.kind ),
self.cur_token.lineno
)
def _at_keyword( self, keyword: str ) -> bool:
return self.cur_token.kind == TokenKind.TypeId and self.cur_token.value == keyword