-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdeepstream-rtsp.py
848 lines (668 loc) · 33 KB
/
deepstream-rtsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
#!/usr/bin/env python3
################################################################################
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
################################################################################
#
# Some NVIDIA example code modified by MegaMosquito ([email protected])
#
# The NVIDIA Deepstream examples are awesome on their own but I wanted to
# create an end-to-end RTSP pipeline for inferencing. This example begins
# with an RTSP video input stream. That stream is piped through an example
# inferencing engine, and ultimately produces an annotated RTSP output stream.
# To accomplish this I combined a couple of the NVIDIA-provided examples...
#
# Most of the code here was taken from:
# /opt/nvidia/deepstream/deepstream-5.0/sources/python/apps/deepstream-test1-rtsp-out
#
# The RTSP stream input element was taken from:
# /opt/nvidia/deepstream/deepstream-5.0/sources/python/apps/deepstream-imagedata-multistream
#
# After you install the Deepstream 5 python bindings those files will be in
# the path locations shown above.
#
# I have tried to explain how things work below so you can take this as a
# starting point, then add, remove and/or replace selected pipeline elements
# to create your own Deepstream application.
#
# Debug print on/off (there are better ways to do this)
def debug(s):
# print(s)
pass
# When you edit the source you may need to also edit this CONFIG_FILE (here
# in the same directory with this source file). It contains configuration
# arguments for the inferencing "element" in the pipeline, and anything else
# you wish, It's convenient for separating this data fromt he source code.
CONFIG_FILE = 'deepstream-rtsp.cfg'
# Basic dependencies
import os
import time
import math
# Additional configuration is pulled from the process environment, if these
# variables are present. In some cases default values are provided to enable
# users to not have to set these if they just want to use standard values.
def get_from_env(v, d):
if v in os.environ and '' != os.environ[v]:
return os.environ[v]
else:
return d
CODEC = get_from_env('CODEC', 'H264') # Could also be 'H265'
BITRATE = get_from_env('BITRATE', '4000000')
RTSPINPUT = get_from_env('RTSPINPUT', '') # No default, so it's *REQUIRED*
RTSPOUTPUTPORTNUM = get_from_env('RTSPOUTPUTPORTNUM', '8554')
RTSPOUTPUTPATH = get_from_env('RTSPOUTPUTPATH', '/ds') # The output URL's path
ARCH = get_from_env('ARCH', '') # No default, so it's *REQUIRED*
IPADDR = get_from_env('IPADDR', '<IPADDRESS>') # host LAN IP, if given
SHOW_FRAMES = 'no' != get_from_env('SHOW_FRAMES', 'yes') # Default is to show
OUTPUT_WIDTH = int(get_from_env('OUTPUT_WIDTH', '1200')) # Output video width
OUTPUT_HEIGHT = int(get_from_env('OUTPUT_HEIGHT', '600')) # Output video height
RTSP_INPUTS = RTSPINPUT.split(',')
# The original examples require the code to be run fromn a specific
# directory, which is inconvenient and error-prone. So I am explicitly
# manipulating the search path here to remove the working directory
# dependency:
import sys
# Oddly the python3 lib is not on the search path, so add that first
sys.path.append('/usr/lib/python3.6')
if 'arm64' == ARCH or 'aarch64' == ARCH:
# For NVIDIA Jetson (arm64) hosts, this path is needed:
sys.path.append('/opt/nvidia/deepstream/deepstream-5.0/sources/python/bindings/jetson')
elif 'amd64' == ARCH or 'x86_64' == ARCH:
# For x86 hosts with NVIDIA graphics cards, this path is needed:
sys.path.append('/opt/nvidia/deepstream/deepstream-5.0/sources/python/bindings/x86_64')
else:
sys.stderr.write('ERROR: Unsupported hardware architecture, "%s".\n' % ARCH)
sys.exit(1)
# This path is required to enable the "common" files from the python bindings
sys.path.append('/opt/nvidia/deepstream/deepstream-5.0/sources/python/apps')
# And there's local stuff
sys.path.append('.')
# I switched the example to use standard temp files
import tempfile
# Gstreamer dependency
import gi
gi.require_version('Gst', '1.0')
gi.require_version('GstRtspServer', '1.0')
from gi.repository import GObject, Gst, GstRtspServer
from common.is_aarch_64 import is_aarch64
from common.bus_call import bus_call
# Import the NVIDIA Deepstream Python bindings
import pyds
#
# This is support code for the RTSP stream input element
#
# The original example code is capable of receiving multiple video streams
# together, but here I'm just using a single stream input here..
#
# This code comes from:
# /opt/nvidia/deepstream/deepstream-5.0/sources/python/apps/deepstream-imagedata-multistream
#
def cb_newpad(decodebin, decoder_src_pad, data):
debug("In cb_newpad")
caps=decoder_src_pad.get_current_caps()
gststruct=caps.get_structure(0)
gstname=gststruct.get_name()
source_bin=data
features=caps.get_features(0)
# Need to check if the pad created by the decodebin is for video and not
# audio.
if(gstname.find("video")!=-1):
# Link the decodebin pad only if decodebin has picked nvidia
# decoder plugin nvdec_*. We do this by checking if the pad caps contain
# NVMM memory features.
if features.contains("memory:NVMM"):
# Get the source bin ghost pad
bin_ghost_pad=source_bin.get_static_pad("src")
if not bin_ghost_pad.set_target(decoder_src_pad):
sys.stderr.write("ERROR: Failed to link decoder src pad to source bin ghost pad\n")
sys.exit(1)
else:
sys.stderr.write("ERROR: Decodebin did not pick nvidia decoder plugin.\n")
sys.exit(1)
def decodebin_child_added(child_proxy,Object,name,user_data):
debug("Decodebin child added:" + name)
if(name.find("decodebin") != -1):
Object.connect("child-added",decodebin_child_added,user_data)
if(is_aarch64() and name.find("nvv4l2decoder") != -1):
debug("Seting bufapi_version")
Object.set_property("bufapi-version",True)
def create_source_bin(index,uri):
debug("Creating source bin")
# Create a source GstBin to abstract this bin's content from the rest of the
# pipeline
bin_name="source-bin-%02d" %index
debug(bin_name)
nbin=Gst.Bin.new(bin_name)
if not nbin:
sys.stderr.write("ERROR: Unable to create source bin")
sys.exit(1)
# Source element for reading from the uri.
# We will use decodebin and let it figure out the container format of the
# stream and the codec and plug the appropriate demux and decode plugins.
uri_decode_bin=Gst.ElementFactory.make("uridecodebin", "uri-decode-bin")
if not uri_decode_bin:
sys.stderr.write("ERROR: Unable to create uri decode bin")
sys.exit(1)
# We set the input uri to the source element
uri_decode_bin.set_property("uri",uri)
# Connect to the "pad-added" signal of the decodebin which generates a
# callback once a new pad for raw data has beed created by the decodebin
uri_decode_bin.connect("pad-added",cb_newpad,nbin)
uri_decode_bin.connect("child-added",decodebin_child_added,nbin)
# We need to create a ghost pad for the source bin which will act as a proxy
# for the video decoder src pad. The ghost pad will not have a target right
# now. Once the decode bin creates the video decoder and generates the
# cb_newpad callback, we will set the ghost pad target to the video decoder
# src pad.
Gst.Bin.add(nbin,uri_decode_bin)
bin_pad=nbin.add_pad(Gst.GhostPad.new_no_target("src",Gst.PadDirection.SRC))
if not bin_pad:
sys.stderr.write("ERROR: Failed to add ghost pad in source bin")
sys.exit(1)
return nbin
#
# This is the "PGIE" inferencing example from the original NVIDIA Deepstream
# example in
#
# This example detects these classes:
# - normal vehicles (cars, trucks, busses)
# - 2-wheeled vehicles (bicycles, mopeds, motorcycles)
# - people
# - road signs
#
PGIE_CLASS_ID_VEHICLE = 0
PGIE_CLASS_ID_BICYCLE = 1
PGIE_CLASS_ID_PERSON = 2
PGIE_CLASS_ID_ROADSIGN = 3
#
# This function is the callback function we will attach to the probe.
# (see "probe" below for details).
#
# It will get called when data arrives at the sink (input) pad for the
# OSD element (the one that draws the boxes, and places text on the
# video frames). This is a good place to probe because all the information
# about the objects detected must be available here.
#
def osd_sink_pad_buffer_probe(pad,info,u_data):
frame_number=0
#Intiallizing object counter with 0.
obj_counter = {
PGIE_CLASS_ID_VEHICLE:0,
PGIE_CLASS_ID_PERSON:0,
PGIE_CLASS_ID_BICYCLE:0,
PGIE_CLASS_ID_ROADSIGN:0
}
num_rects=0
gst_buffer = info.get_buffer()
if not gst_buffer:
debug("Unable to get GstBuffer ")
return
# Retrieve batch metadata from the gst_buffer
# Note that pyds.gst_buffer_get_nvds_batch_meta() expects the
# C address of gst_buffer as input, which is obtained with hash(gst_buffer)
batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer))
l_frame = batch_meta.frame_meta_list
while l_frame is not None:
try:
# Note that l_frame.data needs a cast to pyds.NvDsFrameMeta
# The casting is done by pyds.NvDsFrameMeta.cast()
# The casting also keeps ownership of the underlying memory
# in the C code, so the Python garbage collector will leave
# it alone.
frame_meta = pyds.NvDsFrameMeta.cast(l_frame.data)
except StopIteration:
break
frame_number=frame_meta.frame_num
num_rects = frame_meta.num_obj_meta
l_obj=frame_meta.obj_meta_list
while l_obj is not None:
try:
# Casting l_obj.data to pyds.NvDsObjectMeta
obj_meta=pyds.NvDsObjectMeta.cast(l_obj.data)
except StopIteration:
break
obj_counter[obj_meta.class_id] += 1
try:
l_obj=l_obj.next
except StopIteration:
break
# Acquiring a display meta object. The memory ownership remains in
# the C code so downstream plugins can still access it. Otherwise
# the garbage collector will claim it when this probe function exits.
display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta)
display_meta.num_labels = 1
py_nvosd_text_params = display_meta.text_params[0]
# Setting display text to be shown on screen
# Note that the pyds module allocates a buffer for the string, and the
# memory will not be claimed by the garbage collector.
# Reading the display_text field here will return the C address of the
# allocated string. Use pyds.get_string() to get the string content.
py_nvosd_text_params.display_text = "Frame={} Objects={} Vehicles={} Cycles={} Persons={} Signs={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE], obj_counter[PGIE_CLASS_ID_BICYCLE], obj_counter[PGIE_CLASS_ID_PERSON], obj_counter[PGIE_CLASS_ID_ROADSIGN])
# Now set the offsets where the string should appear
py_nvosd_text_params.x_offset = 10
py_nvosd_text_params.y_offset = 12
# Font , font-color and font-size
py_nvosd_text_params.font_params.font_name = "Serif"
py_nvosd_text_params.font_params.font_size = 10
# set(red, green, blue, alpha); set to White
py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0)
# Text background color
py_nvosd_text_params.set_bg_clr = 1
# set(red, green, blue, alpha); set to Black
py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0)
# Using pyds.get_string() to get display_text as string
if SHOW_FRAMES:
print(pyds.get_string(py_nvosd_text_params.display_text))
pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta)
try:
l_frame=l_frame.next
except StopIteration:
break
return Gst.PadProbeReturn.OK
##############################################################################
# The main program
##############################################################################
#
# Here the deepstream pipeline is constructed of "elements", and you may
# also optionally add "probes" to consume information at any point:
#
# <input> ---> element0 ---> element1 ---> ... -+-> elementN ---> <output>
# |
# V
# (probe)
#
# Each element in the pipeline performs some kind of processing on the stream
# and each may have zero or more source pads and/or zero or more sink pads:
#
# +-----------------------------------------------+
# | elementX |
# | |
# | Some processing happens |
# | here between the sink pads |
# | and the source pads. |
# | |
# <input0> ------> sinkpad0 sourcepad0 ------> <output0>
# | |
# <input1> ------> sinkpad1 sourcepad1 ------> <output1>
# | |
# ... | ... ... | ...
# | |
# <inputN> ------> sinkpadN sourcepadN ------> <outputN>
# | |
# +-----------------------------------------------+
#
# A "source element" typically starts a pipeline and has zero sink
# pads since it receives nothing from other pipeline elements, and it
# provides a single source pad which can feed data to other elements.
#
# A "sink element" typically ends a pipeline and as one sink pad (to
# receive data from the penultimate element) and provides no source
# pads for downstream elements (since there are none).
#
# Most other elements have a single sink pad for input and provide
# a single source pad for output. Multiplexor (mux) elements receive
# multiple inputs and produce a single output, so they have multiple
# sink pads and a single source pad. De-multiplexor (demux) elements
# perform the opposite function converting a single input on their
# only sink pad into multiple outputs on their source pads.
#
# In general elements are created with:
# elementX = Gst.ElementFactory.make( ... )
# The resullt of that must be checked, e.g.:
# if not elementX: sys.exit(1)
# Elements are often configured with:
# elementX.set_property('property-name-goes-here', 'value goes here')
# When ready, elements are added to the pipeline:
# pipeline.add(elementX)
# If the source pad of a previous element (elementQ here) needs to
# be linked to the sink pad of your element (elementX here) you can
# use the link function, like this:
# elementQ.link(elementX)
# The result will flow data from elementQ to elementX:
# elementQ -> elementX
#
# NOTE: for the initial "source element" and the final "sink element", I
# have provided commented-out alternatives (e.g., file input, screen output,
# and no output (the "fake" sink). There is also a "fake" source available
# but I am not sure what use that has.
#
def main(args):
# Announce some useful info at startup
print('\n\n\n\n')
print('Using codec: %s, and bitrate: %s' % (CODEC, BITRATE))
print('RTSP input streams (%d):' % (len(RTSP_INPUTS)))
for i in range(len(RTSP_INPUTS)):
print(' %d: "%s"' % (i, RTSP_INPUTS[i]))
print('RTSP output stream: "rtsp://%s:%s%s"' % (IPADDR, RTSPOUTPUTPORTNUM, RTSPOUTPUTPATH))
print('\n\n\n\n')
time.sleep(5)
# Initialize GStreamer
GObject.threads_init()
Gst.init(None)
# Create the GStreamer pipeline object that will connect the elements
debug("Creating Pipeline ")
pipeline = Gst.Pipeline()
if not pipeline:
sys.stderr.write("ERROR: Unable to create Pipeline\n")
sys.exit(1)
#########################################################################
# The first "source element" in the pipeline is a "bin" element
#########################################################################
# NOTE: An alternate option here could be a file as an input source:
#debug("Creating an element that uses a file as an input source")
#source = Gst.ElementFactory.make("filesrc", "file-source")
#if not source:
# sys.stderr.write("ERROR: Unable to create file input element!\n")
# sys.exit(1)
# In this example I am using a list of one or more RTSP streams for input.
# The code for this is mostly within these 3 functions above:
# def cb_newpad(decodebin, decoder_src_pad,data):
# def decodebin_child_added(child_proxy,Object,name,user_data):
# def create_source_bin(index,uri):
# All of these functions were taken from this NVIDIA Deepstream example:
# /opt/nvidia/deepstream/deepstream-5.0/sources/python/apps/deepstream-imagedata-multistream
# This element consumes RTSP streams "live", and multiplexes them
# together before passing the *combined* stream on to the next element
# in the pipeline. Each of these input RTSP streams is added to the
# pipeline as a "bin", and all of them are linked to the streammux
# element, something like this:
#
# +-------------+ +-------------------+
# | stream0-bin +-->|sink-pad |
# +-------------+ | |
# | |
# +-------------+ | |
# | stream1-bin +-->|sink-pad | +--------------+
# +-------------+ | +-->| next-element +--> ...
# | streammux-element | +--------------+
# ... | |
# | |
# +-------------+ | |
# | streamN-bin +-->|sink-pad |
# +-------------+ +-------------------+
#
# Multiplexing element with bins to read from multiple RTSP input streams
debug("Creating elements to receive RTSP streams as the video input")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write("ERROR: Unable to create NvStreamMux\n")
sys.exit(1)
streammux.set_property('width', 1920)
streammux.set_property('height', 1080)
streammux.set_property('batch-size', 1)
streammux.set_property('batched-push-timeout', 4000000)
# Add streammux to the pipeline
pipeline.add(streammux)
# Initialization
parent_folder_name = tempfile.mkdtemp()
frame_count = {}
saved_count = {}
# Loop through the provided RTSP input sources
for i in range(len(RTSP_INPUTS)):
name = RTSP_INPUTS[i]
debug("--> input #%d: %s" % (i, name))
# Init for this stream
os.mkdir(parent_folder_name+"/stream_"+str(i))
frame_count["stream_"+str(i)]=0
saved_count["stream_"+str(i)]=0
if name.find("rtsp://") == 0 :
is_live = True
# Create the bin for this stream, and make a source pad for its output
source_bin=create_source_bin(i, name)
if not source_bin:
sys.stderr.write("ERROR: Unable to create source bin \n")
sys.exit(1)
srcpad=source_bin.get_static_pad("src")
if not srcpad:
sys.stderr.write("ERROR: Unable to create src pad bin \n")
sys.exit(1)
# Add this bin to the pipeline
pipeline.add(source_bin)
# Get a sink pad in the streammux element
padname="sink_%u" %i
sinkpad= streammux.get_request_pad(padname)
if not sinkpad:
sys.stderr.write("ERROR: Unable to create sink pad bin \n")
sys.exit(1)
# Link the source pad on this bin to the sink pad in streammux
srcpad.link(sinkpad)
debug("All input source elements have been added to the pipeline")
#########################################################################
# The next element in the pipeline does the inferencing (on the GPU)
#########################################################################
debug("Creating an element to do inferencing (PGIE, nvinfer)")
# Use nvinfer to run inferencing on decoder's output,
pgie = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not pgie:
sys.stderr.write("ERROR: Unable to create pgie\n")
sys.exit(1)
# The configuration for the inferencing comes from the CONFIG_FILE.
# See "CONFIG_FILE" above for details
pgie.set_property('config-file-path', CONFIG_FILE)
# Add PGIE to the pipeline, then link streammuux to its input
pipeline.add(pgie)
streammux.link(pgie)
debug("The PGIE element has been added to the pipeline, and linked")
#########################################################################
# The next element in the pipeline converts the output to RGBA format
#########################################################################
debug("Creating an element that converts output video to RGBA format")
# Use convertor to convert from NV12 to RGBA as required by nvosd
nvvidconv = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not nvvidconv:
sys.stderr.write("ERROR: Unable to create nvvidconv\n")
sys.exit(1)
# Add the convertor to the pipeline, then link pgie to its input
pipeline.add(nvvidconv)
pgie.link(nvvidconv)
debug("The convertor element has been added to the pipeline, and linked")
#########################################################################
# At this point in the pipeline, add a "probe" on the `nvvidconv` input
#########################################################################
debug("Creating a probe to view the inferencing metadata")
# This probe will consume the meta data generated by nvinfer
# and provide it to OSD later.
# The probe is added to the sink pad of the OSD element that
# follows nvinfer (so it has all object detection metadata).
# That element is nvvidconv:
followingsinkpad = nvvidconv.get_static_pad("sink")
if not followingsinkpad:
sys.stderr.write("ERROR: Unable to get sink pad of nvosd\n")
sys.exit(1)
# Attach a callback function to receive the data from this probe
# The probe's callback function displays in the terminal the object
# detection results metadata for each frame.
# See the "osd_sink_pad_buffer_probe" function definition above for
# details on how the probe receives the data and what it does with it.
followingsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)
#########################################################################
# Next element de-multiplexes the input streams into tiles in one stream
#########################################################################
debug("Creating an element to demultiplex the videos into tiles")
number_of_sources = len(RTSP_INPUTS)
tiler=Gst.ElementFactory.make("nvmultistreamtiler", "nvtiler")
if not tiler:
sys.stderr.write(" Unable to create tiler \n")
tiler_rows=int(math.sqrt(number_of_sources))
tiler_columns=int(math.ceil((1.0*number_of_sources)/tiler_rows))
tiler.set_property("rows",tiler_rows)
tiler.set_property("columns",tiler_columns)
tiler.set_property("width", OUTPUT_WIDTH)
tiler.set_property("height",OUTPUT_HEIGHT)
if not is_aarch64():
# Use CUDA unified memory in the pipeline so frames
# can be easily accessed on CPU in Python.
mem_type = int(pyds.NVBUF_MEM_CUDA_UNIFIED)
streammux.set_property("nvbuf-memory-type", mem_type)
nvvidconv.set_property("nvbuf-memory-type", mem_type)
tiler.set_property("nvbuf-memory-type", mem_type)
pipeline.add(tiler)
nvvidconv.link(tiler)
debug("The demultiplexing/tiling element was added and linked")
#########################################################################
# The next element in the pipeline draws boxes (requires RGBA input)
#########################################################################
debug("Creating elements that draw boxes in the output video")
# Create OSD to draw on the converted RGBA buffer
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
sys.stderr.write("ERROR: Unable to create nvosd\n")
sys.exit(1)
nvvidconv_postosd = Gst.ElementFactory.make("nvvideoconvert", "convertor_postosd")
if not nvvidconv_postosd:
sys.stderr.write("ERROR: Unable to create nvvidconv_postosd\n")
sys.exit(1)
# Add the two OSD elements to the pipeline, then link them togther and to the convertor
pipeline.add(nvosd)
pipeline.add(nvvidconv_postosd)
tiler.link(nvosd)
nvosd.link(nvvidconv_postosd)
debug("The OSD element has been added to the pipeline, and linked")
#########################################################################
# The next element in the pipeline is a caps filter
#########################################################################
debug("Creating a caps filter element (to enforce data format restrictions to help maintain stream consistency and processing efficiency)")
# Create a caps filter
caps = Gst.ElementFactory.make("capsfilter", "filter")
caps.set_property("caps", Gst.Caps.from_string("video/x-raw(memory:NVMM), format=I420"))
# Add the caps filter to the pipeline, then link the OSD output to its input
pipeline.add(caps)
nvvidconv_postosd.link(caps)
debug("The caps filter element has been added to the pipeline, and linked")
#########################################################################
# The next element in the pipeline encodes the output (v4l2, h264)
#########################################################################
debug("Creating an element that converts output video to H264 for 4VL2")
# Make the encoder
if CODEC == "H264":
encoder = Gst.ElementFactory.make("nvv4l2h264enc", "encoder")
debug("Creating H264 Encoder")
elif CODEC == "H265":
encoder = Gst.ElementFactory.make("nvv4l2h265enc", "encoder")
debug("Creating H265 Encoder")
if not encoder:
sys.stderr.write("ERROR: Unable to create encoder")
sys.exit(1)
encoder.set_property('bitrate', int(BITRATE))
if is_aarch64():
encoder.set_property('preset-level', 1)
encoder.set_property('insert-sps-pps', 1)
encoder.set_property('bufapi-version', 1)
# Add the V$L2/H264 encoder element to the pipeline, then link the caps filter to it
pipeline.add(encoder)
caps.link(encoder)
debug("The encoder element has been added to the pipeline, and linked")
#########################################################################
# The next element in the pipeline encodes the output into RTP packets
#########################################################################
debug("Creating an element that encapsulates video into RTP packets for RTSP streaming")
# Make the payload-encode video into RTP packets
if CODEC == "H264":
rtppay = Gst.ElementFactory.make("rtph264pay", "rtppay")
debug("Creating H264 rtppay")
elif CODEC == "H265":
rtppay = Gst.ElementFactory.make("rtph265pay", "rtppay")
debug("Creating H265 rtppay")
if not rtppay:
sys.stderr.write("ERROR: Unable to create rtppay")
sys.exit(1)
# Add the RTP packet encoder element to the pipeline, then link the H264 encoder onto it
pipeline.add(rtppay)
encoder.link(rtppay)
debug("The RTP packet encoder element has been added to the pipeline, and linked")
#########################################################################
# The final "sink element" in the pipeline is the RTSP output stream sink
#########################################################################
# As an alternative, you could send the output nowhere (the "fake" sink)
#debug("Creating FAKE sink")
#sink = Gst.ElementFactory.make("fakesink", "nvvideo-renderer")
#if not sink:
# sys.stderr.write("ERROR: Unable to create FAKE sink\n")
# sys.exit(1)
#sink.set_property("sync", 0)
# As an alternative, you could send the output to the screen
#debug("Creating EGLSink")
#sink = Gst.ElementFactory.make("nveglglessink", "nvvideo-renderer")
#if not sink:
# sys.stderr.write("ERROR: Unable to create egl sink\n")
# sys.exit(1)
#sink.set_property("sync", 0)
debug("Creating RTSP output stream sink...")
# The RTSP stream output sink sends to this local multicast UDP port
# This is received by the GstRtspStreamer instance created below once
# the pipeline is started. See "GstRtspStreamer" below for details.
UDP_MULTICAST_ADDRESS = '224.224.255.255'
UDP_MULTICAST_PORT = 5400
sink = Gst.ElementFactory.make("udpsink", "udpsink")
if not sink:
sys.stderr.write("ERROR: Unable to create udpsink")
sys.exit(1)
sink.set_property('host', UDP_MULTICAST_ADDRESS)
sink.set_property('port', UDP_MULTICAST_PORT)
sink.set_property('async', False)
# The command below tells it to sync to a clock (1) or don't sync (0).
# I find that using 1 slows things down, but it seems much more regular.
# When I use 0 it is much faster but it freezes intermittently.
sink.set_property("sync", 0)
# Add the RTSP output stream sink element to the pipeline, then link the RTP paket encoder onto it
pipeline.add(sink)
rtppay.link(sink)
debug("The RTSP output stream element has been added to the pipeline, and linked")
#########################################################################
# Pipeline construction is complete! Create the event loop.
#########################################################################
# create an event loop and feed gstreamer bus mesages to it
debug("Creating the event loop...")
loop = GObject.MainLoop()
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect ("message", bus_call, loop)
#########################################################################
# Create a GstRtspStreamer instance to consume the video stream from the
# multicast UDP port (see "MULTICAST" for details). This insttance will
# publish an RTSP output stream on the specified (TCP) port. Since this
# example is running in a container you will typically want to publish
# this TCP port to the host, so users can access the RTSP stream from
# other hosts.
#########################################################################
server = GstRtspServer.RTSPServer.new()
server.props.service = RTSPOUTPUTPORTNUM
server.attach(None)
factory = GstRtspServer.RTSPMediaFactory.new()
factory.set_launch( "( udpsrc name=pay0 port=%d buffer-size=524288 caps=\"application/x-rtp, media=video, clock-rate=90000, encoding-name=(string)%s, payload=96 \" )" % (UDP_MULTICAST_PORT, CODEC))
factory.set_shared(True)
server.get_mount_points().add_factory(RTSPOUTPUTPATH, factory)
debug("RTSP output stream service is ready")
#########################################################################
# Finally we can start it running...
#########################################################################
# Start play back and listen to events
print("\n\n\n\n*** Deepstream RTSP pipeline example is starting...\n\n\n\n")
pipeline.set_state(Gst.State.PLAYING)
try:
# Run forever
loop.run()
except:
sys.stderr.write("\n\n\n*** ERROR: main event loop exited!\n\n\n")
# Attempt cleanup on error
pipeline.set_state(Gst.State.NULL)
if __name__ == '__main__':
sys.exit(main(sys.argv))