diff --git a/EDA.ipynb b/EDA.ipynb new file mode 100644 index 0000000..c412fd2 --- /dev/null +++ b/EDA.ipynb @@ -0,0 +1,369 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import seaborn as sns\n", + "sns.set()\n", + "import librosa\n", + "import json\n", + "import os\n", + "import IPython\n", + "%matplotlib inline\n", + "from tqdm.notebook import tqdm\n", + "import torchaudio\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.pyplot import cm" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train Shape: (1216, 7)\nColumns: Index(['recording_id', 'species_id', 'songtype_id', 't_min', 'f_min', 't_max',\n 'f_max'],\n dtype='object')\nNumber of Species in this dataset: 24\nNumber of SongTypes: 2\n" + ] + } + ], + "source": [ + "train_data = pd.read_csv(\"/home/lustbeast/AudioClass/Dataset/rfcx-species-audio-detection/train_tp.csv\")\n", + "print(f\"Train Shape: {train_data.shape}\")\n", + "print(f\"Columns: {train_data.columns}\")\n", + "print(f\"Number of Species in this dataset: {train_data.species_id.nunique()}\")\n", + "print(f\"Number of SongTypes: {train_data.songtype_id.nunique()}\")" + ] + }, + { + "source": [ + "### Features:\n", + " 1. T_MIN - The starting time of a species sound in an audio file.\n", + " 2. T_MAX - The ending time of a species sound in an audio file.\n", + " 3. F_MIN - The minimum frequency of the species.\n", + " 4. F_MAX - The maximum frequency of the species." + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## Null Values" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "recording_id 0\n", + "species_id 0\n", + "songtype_id 0\n", + "t_min 0\n", + "f_min 0\n", + "t_max 0\n", + "f_max 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "train_data.isna().sum()" + ] + }, + { + "source": [ + "* There are no null values present in training data." + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## EDA" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_count(feature,desc,df):\n", + " fig,ax = plt.subplots(1,1,figsize=(20,5))\n", + " total = len(df)\n", + " img = sns.countplot(df[feature],order = df[feature].value_counts().index[:30])\n", + " img.set_title(desc)\n", + " for p in ax.patches:\n", + " height = p.get_height()\n", + " ax.text(p.get_x()+p.get_width()/2.,\n", + " height+3,\n", + " '{:1.2f}%'.format(100*height/total),\n", + " ha='center'\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1216" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2021-02-02T12:42:36.475896\n image/svg+xml\n \n \n Matplotlib v3.3.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABJkAAAFSCAYAAABR3Q77AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABBOklEQVR4nO3deXxU1f3/8VcWIATCIgQq7gocrFj98hVxX6viWlzqioCoFdxXWsUNqZbWql93rFil1WrVAq1+/db+tHXBKqVa27odxBUV2WTHBLL8/piRJpCEiQOZufh6Ph55ZHLPmTvvO1zmTj4550xBbW0tkiRJkiRJUjYKcx1AkiRJkiRJyWeRSZIkSZIkSVmzyCRJkiRJkqSsWWSSJEmSJElS1iwySZIkSZIkKWsWmSRJkiRJkpQ1i0ySJElNCCG8GULYL9c58kEIYb8Qwie5ziFJkvJTca4DSJIkZSqEsBfwM2AHoBp4G7gwxjh9Qz1mjHGHDbHfEMLJwMVAH2Ap8DpwfYxx6oZ4vDqPWwv0ijHObKR9GHAf8CVQA7wPXBljfLKZj/MA8EmM8cqsAkuSpMRwJJMkSUqEEEIH4EngdmATYDNgDFCZy1xfRwjhYuB/gBuA7sCWwF3A93IYq66XY4ztgU6kCk6PhhA65zaSJEnKdwW1tbW5ziBJkrROIYRdgGdijJ0aaR8GnAn8AzgVmA2cE2N8Nt3eEbgZOIzUCJ37gWtijNXp9jNJjSzaHJgFDI4xvhZC+BA4I8b4TAihEBiVfpxOwLPAiBjjFyGEEmACcChQBLwLHBFjnLNGzo7Ap8BpMcbHGjmWNsBPgePTmx4FfhhjrEwf5xkxxr3q9F89Oik9gmg5sDWwD/AWcHKM8b0QwgvA3sAKoBY4Pcb42waex9X7DyG0A5YB/YH2wIMxxs3TbdsDdwM7p4/p8hjjH0IIPwDuTD/GSuAvMcYjGzpWSZK08XAkkyRJSooZQHUIYWII4dBGRtYMAN4DugLXAJNCCJuk2x4AqoCewH8BBwNnAIQQvg9cCwwBOgBHAQsa2P95wCBgX6AHsJBUMQVgKNAR2ALoAowgNeVsTbsDJcDkJo51NLAbqeLNTsCuQHOmnZ1IapRXZ2AmcD1AjHGfdPtOMcb2axaY1hRCKCb1HC0jVTSr29YKeAL4E9CN1HPzUAghxBh/ATwE/Cz9OBaYJEn6BrDIJEmSEiHGuATYi9TomHuBeSGEP4QQutfpNhf4nxjjqnQBJQKHp/scRmr9puUxxrnALaSKMZAqpPwsxjg9xlgbY5wZY/yogRgjgNExxk9ijJWkClPHpYsxq0gVl3rGGKtjjK+mM6+pCzA/xljVxOGeAlwXY5wbY5xHqmB06rqfpdUmxxj/ln6Mh0gVq5pjtxDCIuBz4CTg6Bjj4jX7kBrZNC7GuDLG+GdS0xlPauZjSZKkjYQLf0uSpMSIMb4NDAMIIfQBHiS1ttFXhY1PY4x11wL4iNSIo62AVsDsEMJXbYWkpsVBavTRexlE2AqYHEKoqbOtmtS6Sr9O7+eREEKndLbRMcZVa+xjAdA1hFDcRKGpRzr7mseRqc/r3F5BqhjUHK/UnY7XiB7ArBhj3efiI1JrZUmSpG8gi0ySJCmRYozvpNcfOqvO5s1CCAV1Ck1bAn8gVUyqBLo2UtiZBWyXwcPOAobHGF9qpH0MMCaEsDXwFKmRVPet0efldJZBwOON7OczUgWtN+scx2fp28uB0q86hhC+lUHuDeEzYIsQQmGdQtOWpKY1QmrEmSRJ+gaxyCRJkhIhPXLpcOC3McZPQghbkBrB9Eqdbt2A80MId5Eq4mwPPBVjXBBC+BNwUwjhKlJrDG0DbB5jfJ7Ugt03hxCmAq+RKjitamDK3Hjg+hDC0BjjRyGEcmCPGOPvQwj7A/NJLbS9hNT0uZo17k+McXEI4WrgzhBCFak1jVYB3wX2jzGOAh4GrgwhTCdVrLma1MgogH8CO4QQdgbeITVlrznmANuSWqspG9NIjZIaFUK4CdgTOJLUAuF1H0eSJH1DuCaTJElKiqWkFvaeFkJYTqq49AZwSZ0+04BepIo91wPHxRi/WsB7CNCaVBFoIalRRJsCpD/l7XrgN+nHmQJswtpuJTUy6k8hhKXpDAPSbd9K73MJ8DbwPKkpdGuJMd5E6pPsrgTmkRohdW76cQF+DPwd+Bfwb1KFrx+n7zsDuA54htRi3FMbfroadS0wMYSwKIRw/Lo6NybGuJJUUelQUs/3XcCQGOM76S73Ad9OP86Ur/s4kiQpOQpqax3JLEmSki+EMAw4I4O1hCRJkrQBOJJJkiRJkiRJWbPIJEmSJEmSpKx946fLhRAuAs4gtajmv4HTYowVddovTrdXkVozYXh6oc+dgbuBDqQ+uvj6GONv0/d5CNgReDLGeEV625XAGzHGKS10aJIkSZIkSS1mYx7JVAxsTROfoBdC2Aw4H9glxtgXKAJOXKPbP9Lt3yG1mOfP0ttXkFrccgdgIPA/IYROIYTvAF+m+/cPIXQMIWwKDLDAJEmSJEmSEq7RekujBZiNwFakPpp3b+CThjpccMEF3e+44442P/7xj3vPnj17WWlpaZe+fftWk3qyAIgxfkDq45A57LDDPnr22We3A7ZOf6IK6dv07dt34QknnLBzZWVl0R//+MeuS5cu3aakpKTs9ttv3+yyyy67avfddx9fd7+SJEmSJEkJtDnwItATeK9uw8ZcZNo0/f3FxjqcffbZtGvXjrFjx77epk0bDjjgAG666aYDGuvfuXNnRowYAfBB3e3/+te/2GKLLRg9evRfCgsLadu2LYMHD/7eBRdcQHl5+ZsHHnggN9xww5ojpCRJkiRJkpJqU9YoMm3MazJtB8xcuHA5NTUNH+OSJUu44orLGDt2HGVl7Rk9+ofsv/93GTjwsLX6/vGPT/G73/2WO++8l9atW6/ePn/+PM499yyuvHIMffvuuNb9LrvsQkaNGs3//u8fmDlzBv37D+B73ztmvR2kJEmSJElSSyksLKBz53bwDRvJVA1QU1PbaJHpb3+bxqab9qBjx04A7LPP/vzrX//k4IMPrddv+vRpTJx4H3fc8QuKi1ut3t/y5cu49NILOPPMkXz7233XepwXX3yO3r37sHz5cj75ZBbXXTeOiy8+l4MOOpSSkpL1e7SSJEmSJEktp3rNDRvzwt/r1L37t3jzzTeoqKigtraWV1+dztZbb12vz4wZ73DjjTcwbtzNdO68yertq1at4oorLmPgwMPZf//vrrXvqqoqHn30YU45ZSiVlZUUFBQAUF1dw6pVqzbocUmSJEmSJLW0jXkk0zrtsENf9t//QIYPP4WioiJ69w4cddQxTJgwnj59tmevvfblzjtv48svv+Sqq34EQPfu3fnpT2/hz3/+f7z++mssXryYp556EoDRo6+hV68AwKRJj3LooUdQUlJCz569qKioYMiQE9httz0pKyvL2TFLkiRJkiRtCBvzmkxbAx8sWLCs0elykiRJkiRJylxhYQFdurQH2Ab4sF5bLgJJkiRJkiRp42KRSZIkSZIkSVmzyCRJkiRJkqSstcjC3yGEnwPHklonaccY4xvp7b2BiUAXYAEwJMb47rraJEmSJEmSlF9aaiTTFGAf4KM1to8H7owx9gbuBO7JsE2SJEmSJEl5pEWKTDHGqTHGWXW3hRC6Af2Ah9ObHgb6hRDKm2pribySJEmSJElqnhaZLteILYBPY4zVADHG6hDCZ+ntBU20zWvOg6Q/Vg+A2qpqCoqL1lP89Sdfc0mSJEmSJGUql0WmFrFgwTJqamoBKC8vY97dD+Y40drKRw5m3ryluY4hSZIkSZLUpMLCgnoDeuq1tXCWumYBm4UQigDS33uktzfVJkmSJEmSpDyTsyJTjHEu8DpwUnrTScA/Yozzmmpr6ZySJEmSJElatxYpMoUQbgshfAJsDjwTQngz3TQCOC+EMAM4L/0zGbRJkiRJkiQpj7TImkwxxvOB8xvY/g4woJH7NNomSZIkSZKk/JLLNZkkSZIkSZK0kbDIJEmSJEmSpKxZZJIkSZIkSVLWLDJJkiRJkiQpaxaZJEmSJEmSlDWLTJIkSZIkScqaRSZJkiRJkiRlzSKTJEmSJEmSsmaRSZIkSZIkSVmzyCRJkiRJkqSsWWSSJEmSJElS1iwySZIkSZIkKWsWmSRJkiRJkpQ1i0ySJEmSJEnKmkUmSZIkSZIkZc0ikyRJkiRJkrJmkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtYsMkmSJEmSJClrFpkkSZIkSZKUNYtMkiRJkiRJyppFJkmSJEmSJGXNIpMkSZIkSZKyZpFJkiRJkiRJWbPIJEmSJEmSpKxZZJIkSZIkSVLWLDJJkiRJkiQpaxaZJEmSJEmSlDWLTJIkSZIkScqaRSZJkiRJkiRlzSKTJEmSJEmSsmaRSZIkSZIkSVmzyCRJkiRJkqSsWWSSJEmSJElS1iwySZIkSZIkKWsWmSRJkiRJkpQ1i0ySJEmSJEnKmkUmSZIkSZIkZc0ikyRJkiRJkrJmkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtaKcx0AIIRwBDAWKEh/jYkxTgoh9AYmAl2ABcCQGOO7uUsqSZIkSZKkhuR8JFMIoQD4NXBqjHFn4FRgYgihEBgP3Blj7A3cCdyTs6CSJEmSJElqVM6LTGk1QMf07U7AbKAr0A94OL39YaBfCKG8xdNJkiRJkiSpSTmfLhdjrA0hHA/8PoSwHCgDDgO2AD6NMVan+1WHED5Lb5+X6f67dGm/AVKvf+XlZbmOIEmSJEmS9LXlvMgUQigGLge+F2N8KYSwJ/AoqWlzWVuwYBk1NbVAfhdy5s1bmusIkiRJkiRJTSosLGh0QE8+TJfbGegRY3wJIP19OVABbBZCKAJIf+8BzMpRTkmSJEmSJDUiH4pMnwCbhxACQAhhe6A78C7wOnBSut9JwD9ijBlPlZMkSZIkSVLLyHmRKcb4OTASeDyE8E/gEWB4jPELYARwXghhBnBe+mdJkiRJkiTlmZyvyQQQY3wIeKiB7e8AA1o+kSRJkiRJkpoj5yOZJEmSJEmSlHwWmSRJkiRJkpQ1i0ySJEmSJEnKmkUmSZIkSZIkZc0ikyRJkiRJkrJmkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtYsMkmSJEmSJClrFpkkSZIkSZKUteJcB9DXc9xxR1JaWkphYRFFRUXcd9+v67W/9trfufzyS9h0080A2Hff/TnttDMBePTRh3niicnU1sJRRw3i+ONPBuCuu25j2rS/0rNnb6666joAnn76KRYvXrS6jyRJkiRJUkMsMiXYbbfdQ6dOnRpt32mn/+JnP/ufetvef38mTzwxmXvv/RXFxcVccsn57LHH3nTq1JkZM95h4sRHGDduLO+9N5PNN9+cp556gptuun3DHogkSZIkSUo8p8t9w3z44Yd8+9t9KSkpobi4mP/6r348//yfKSwsoKqqitraWioqKiguLubhhx/k2GNPoLjYWqQkSZIkSWqaRaaEKigo4OKLz2H48MH8/veTGuzzxhv/ZujQk7jkkvN5//33ANh22+345z9fZ/HiRVRUVPDyyy8xd+4cSkvbsfvue3LaaafQpUtX2rVrz1tvvcE+++zXgkclSZIkSZKSqqC2tjbXGTaUrYEPFixYRk1N6hjLy8uYd/eDOQ3VkPKRg5k3b2mz7jNv3lzKy7uxcOEXXHjhOVx00WXsvHO/1e3Lly+joKCQ0tJSXn55KrfeehOPPDIZgCefnMKkSY/Ttm1bttlmW1q1as0FF1xSb//jxo3l6KO/z4wZ7/C3v73Cdtv1ZNiwM7I/WEmSJEmSlFiFhQV06dIeYBvgw3ptuQik7JWXdwOgc+dN2Gef/XjrrTfrtbdr157S0lIAdt99L6qqqli0aBEARxwxiF/+8kHuvPNeyso6sMUWW9a774wZ71BbW8uWW27FX/7yDGPHjuOzzz5l1qyPN/yBSZIkSZKkRLLIlEBffvklK1YsX317+vRpbLvtdvX6LFgwn69Gqb311hvU1NTQsWNHABYu/AKAzz//nOef/zMHHTSw3n0nTBjPmWeOpKqqiurqGiA1Pa+iomKDHpckSZIkSUouV3ROoC++WMAVV1wGQHV1NQcddAi77bYHU6Y8DsCgQcfx3HPPMnny7ygqKqJNmzaMGXMDBQUFAIwePYolSxZTVFTMxRf/kLKystX7fuGF5whhe7p2LQegV6/eDBlyAttt14tevXq38JFKkiRJkqSkcE2mPPB11mSSJEmSJElqaa7JJEmSJEmSpA3KIpMkSZIkSZKyZpFJkiRJkiRJWbPIJEmSJEmSpKxZZJIkSZIkSVLWLDJJkiRJkiQpa8W5DqDMbNKxhKLWrXIdo57qlav4YnFFrmNIkiRJkqQ8YJEpIYpat2LO3TfmOkY93UdeBlhkkiRJkiRJTpeTJEmSJEnSemCRSZIkSZIkSVmzyCRJkiRJkqSsWWSSJEmSJElS1iwySZIkSZIkKWsWmSRJkiRJkpQ1i0ySJEmSJEnKmkUmSZIkSZIkZc0ikyRJkiRJkrJmkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtYsMkmSJEmSJClrFpkkSZIkSZKUNYtMkiRJkiRJyppFJkmSJEmSJGWtONcBAEIIJcAtwHeBCuDlGOMPQgi9gYlAF2ABMCTG+G7ukkqSJEmSJKkh+TKS6Wekiku9Y4w7Alelt48H7owx9gbuBO7JUT5JkiRJkiQ1IedFphBCe2AIcFWMsRYgxjgnhNAN6Ac8nO76MNAvhFCem6SSJEmSJElqTD5Ml9uO1FS4a0II+wPLgCuBL4FPY4zVADHG6hDCZ8AWwLxMd96lS/v1n3gDKC8vy3WEryWpuSVJkiRJ0vqVD0WmImBb4B8xxstCCAOAJ4Dvr4+dL1iwjJqaWiC/CyLz5i1tsj1fs68rtyRJkiRJ2ngUFhY0OqAn59PlgI+BKtLT4mKM04D5pEYybRZCKAJIf+8BzMpRTkmSJEmSJDUi50WmGON84C/AQQDpT5TrBswAXgdOSnc9idRop4ynykmSJEmSJKll5LzIlDYCuCKE8G/gEeDUGOOi9PbzQggzgPPSP0uSJEmSJCnPZLwmUwjh0hjjzxvYfnGM8eZsQsQY3wf2a2D7O8CAbPYtSZIkSZKkDa85I5mubmT7lesjiCRJkiRJkpJrnSOZQggHpG8WhRD2BwrqNG8L+PFikiRJkiRJ33CZTJe7L/29BPhlne21wOek1kqSJEmSJEnSN9g6i0wxxm0AQgi/ijEO2fCRJEmSJEmSlDQZL/xdt8AUQihco61mfYaSJEmSJElSsmS88HcIoV8I4eUQwnJgVfqrKv1dapbq6mpOO+1kRo26cK22119/jeHDT2HffQfwl788U6/t4ovPY+DA/da635gxVzJ06Incc8+dq7c98MAEXnjhOXMnPHtScyc5e1JzJzl7UnMnOXtScyc5e1JzJzl7UnMnOXtScyc9u6T80ZxPl5sI/AXYhdSC39sC26S/S83y2GMPs9VW2zTY1r37t7jiimv57ncPWavt5JNP5corr6u3bebMd2nTpg0TJz7C22+/ybJly5g/fz5vvfUm++yzn7kTnj2puZOcPam5k5w9qbmTnD2puZOcPam5k5w9qbmTnD2puZOeXVL+aE6RaStgdIzx7RjjR3W/NlQ4bZzmzp3Dyy+/xJFHDmqwfdNNe9CzZy8KC9c+PXfZZVdKS0vrbSsuLqayspKamhqqqqooLCzkvvvGc/rpZ5k74dmTmjvJ2ZOaO8nZk5o7ydmTmjvJ2ZOaO8nZk5o7ydmTmjvp2SXll+YUmSYDB2+oIPrmuO22mxg58nwKCgrWy/623nobOnXqzPDhg9lzz3349NNZ1NTUEEKf9bL/ryQ1NyQ3e1JzQ3KzJzU3JDd7UnNDcrMnNTckN3tSc0Nysyc1NyQ3e1JzQ7KzS8ovGS/8DZQAk0MIU4HP6zb4qXPK1EsvvUinTpvQp8/2vPba39fbfi+44JLVt0eNuohRo65g4sT7mDnzXfr3H8BRRx2d1f6TmhuSmz2puSG52ZOaG5KbPam5IbnZk5obkps9qbkhudmTmhuSmz2puSHZ2SXln+aMZHoL+CnwEvDeGl9SRv7973/y0ksvcNxxR3LttaN59dXpXHfdVett/y+++Bwh9GHFihV8+uknjB07jueee5aKioqs9pvU3JDc7EnNDcnNntTckNzsSc0Nyc2e1NyQ3OxJzQ3JzZ7U3JDc7EnNDcnOLin/ZDySKcY4ZkMG0TfDiBHnMmLEuQC89trfeeSRB7n66rHrZd9VVVU8+ujD3Hjjrcya9fHq4b7V1TWsWrWKkpKSb1xuSG72pOaG5GZPam5Ibvak5obkZk9qbkhu9qTmhuRmT2puSG72pOaGZGeXlH8yHskUQjigsa8NGVDfDBMmjGfq1OcBePvtNzn66MP4y1+e4cYbf8Lgwcev7nf22Wdw9dU/4u9/n87RRx/GtGkvr26bNOlRDj30CEpKSujZsxcVFRUMGXICIfShrKzM3BtJ9qTmTnL2pOZOcvak5k5y9qTmTnL2pOZOcvak5k5y9qTmTnp2SblTUFtbm1HHEMIHa2wqB1oDn8QYt13fwdaDrYEPFixYRk1N6hjLy8uYd/eDOQ3VkPKRg5k3b2nTfcrLmHP3jS2UKDPdR162ztySJEmSJGnjUVhYQJcu7QG2AT6s29ac6XLb1P05hFAEXAlYZZAkSZIkSfqGa87C3/XEGKuB64FR6y+OJEmSJEmSkuhrF5nSDgJq1kcQSZIkSZIkJVfG0+VCCLOAugs4lQIlwNnrO5QkSZIkSZKSJeMiEzB4jZ+XAzNijEvWYx5JkiRJkiQlUHMW/n4eIIRQCHQH5sQYnSonSZIkSZKkZk2XKwPuBE4AWgGrQgiPAOfHGBdvoHxKuE06tqaodZtcx1hL9cpKvli8ssk+nTu2pjjPsletrGThOnJ36tiaVnmWG2DVykoWJTB7Jrk7dmpF61YlLZQocytXVbB40aom++Rj9kxyd+jUmjat8utcAahcVcmSRU2fL2Wd2lDSqnULJcpMxaqVLF1U2WSfsk4llLRq1UKJMlexahVLF1U02Scfsyc1N2SavS0lrZozYH7Dq1hVxdJFXzbZJx9zQ6bZSylpVdRCiTJTsaqapYtWNNmnQ6dS2uRZboDKVdUsWUf2jp3a0bpVtkvcrl8rV9WweNHyJvt06tSOVnmWG2DVqhoWrSN7XZWVlZx77pmsXLmK6upq9t//QE4//ay1+j377P/j/vt/ARTQs2cvrr32et59N/Lzn49j+fLlFBUVMmTIcA488GAAxoy5kvffn8kee+zNWWedA8ADD0xg2217ss8++62PQ5U2as25it4OtAN2BD4CtiL16XK3AUPXfzRtDIpat+Hj247LdYy1bHn+40DTvwgWt27D9HuObJlAGep/1hOsK3er1m14+r7DWiZQMxxy+lNkkv239w9smUAZOuG0P7Ku3K1blXDPrw9pmUDNcNapTwNNF2tatyrh+t/mV/bRJ6w7d5tWbThtcn6dKwD3H73u86WkVWsOm3JJywTK0FODbmIpTReZSlq14vDJN7ZQosz979GXsZSmCx4lrVpx+O9+0UKJMvO/x/4go9xHPP5QCyXK3JPHnZJB9mKOfHxKywTK0BPHDWLpOvqUtCpm0OPPtkie5phy3IEZZC/iuN+91iJ5MvX4sf3WmbtNqyLOnzyrRfI0x21Hb7HOPq1bFTJh0twWSJO5M47pts4+rVoV8n+/nd8CaZrn0BO6Nqt/69atufXW8ZSWllJVVcXIkaczYMAe9O274+o+s2Z9zIMP3s9dd91Hhw4dWLjwCwDatCnhyivHsMUWWzJ//jxOP30wu+66O3PmfE6bNm2YOPERLrzwbJYtW0ZFRQVvvfUmw4adsV6PV9pYNafINBDYNsb4VUl/RgjhNOC99R9LkiRJkqSGFRQUUFpaCkBVVRXV1VUUFBTU6/PEE5M55pjj6dChAwCdO28CwJZbbrW6T9eu5XTqtAmLFi2kuLiYyspKampqqKqqorCwkPvuG9/gCClJDWtOkakCKCc1iukrXWEdf/qUJEmSJGk9q66u5vTTT+XTT2dx9NHfZ4cd+tZrnzXrYwBGjhxOdXUNw4f/gN1226Nen7feeoOqqlVsttnmFBYW0qlTZ4YPH8whhxzGp5/OoqamhhD6rNfcmUz1e+qpJ7jrrlvp2jU1Ou3YY4/nyCMHrW5fvnwZgwcfz95778vFF/+QlStX8qMfXcK8eXM4+ujvc8wx3wfgpz+9nkGDjl3vxyA1pjlFpgnA/wsh3Mx/pstdBNy7IYJJkiRJktSYoqIiHnjgNyxdupQrrriU99+fybbb9lzdXl1dzaxZs7j99l8wd+4czj33B0yc+AhlZWUAzJ8/n7Fjr2b06DEUFqbWqbrggv9MaR816iJGjbqCiRPvY+bMd+nffwBHHXV01rkzmeoHcMABB3HxxT9scB/33juenXb6r9U//+1vL/Od7+zEkCHDGTnydI455vu8++4MamqqLTCpRTVnxbfrgZ8AxwE3pb//LMY4dkMEkyRJkiRpXcrKyujXbxdeeeXletvLy7ux1177UFxcTI8em7HFFlvyySep0U3Lly9j1KgL+MEPzl6ruAPw4ovPEUIfVqxYwaeffsLYseN47rlnqahoek26TGQy1a8p77zzNgsXLmDXXXdbva2oKDXVr6qqitraWgAmTLibM88cmXVeqTmaU2S6FYgxxu/GGL8dY/wu8HYI4X82TDRJkiRJkta2cOFCli5NLS1fWVnB9OnT2Gqrrev12Xvv/fjHP14FYNGiRcya9TE9emzGqlWruOKKyxg48HD23/+7a+27qqqKRx99mFNOGUplZeXqAlB1dQ2rVjX94SSZqq6uZtiwkznyyIPYZZcBa031A3j++T8zdOiJXHnlKObM+RyAmpoa7rjjFs4558J6ffv3H8Ds2Z9x1lnDOO64E5k69Xl69+5D167l6yWvlKnmTJc7Cbh0jW2vAlOAC9dTHkmSJEmSmrRgwXyuv/4aampqqKmp4YADDmLPPfdmwoTx9OmzPXvttS8DBuzO9OmvMHjw9yksLOTss8+nY8dOPP30U7z++mssXryYp556EoDRo6+hV68AwKRJj3LooUdQUlJCz569qKioYMiQE9httz1XT7XL1rqm+u25595897uH0Lp1a6ZM+R3XX38tt902nsmTH2P33fekW7fu9fZXXFzMtddeD6SKZBdffC7jxt3E7bffzJw5nzNw4OHstde+6yW71JTmFJlqgaI1thXRvNFQkiRJkiRlpWfPXtx//2/W2n7GGSNW3y4oKOC88y7mvPPq9znkkMM45JDDGt338cefXG8fY8bckH3gRtSd6le3yNSxY6fVt488chB3330bAG+88W/++c9/MHny43z55QpWraqibdtSRo78z0FOmvQYAwcezptv/pt27dozZsxPuOCCkRaZ1CKaUyB6ERgbQigESH+/Nr1dkiRJkiStQyZT/ebPn7/69tSpL7DVVtsAcM01P2bSpP/l8cef4JxzLmTgwMPqFZiWLFnCX//6IgMHHk5FRQWFhYUUFBRQWZn9WlJSJpozkukC4ElgdgjhI2BLYDZw5IYIJkmSJEnSxiaTqX6PP/4IU6e+QFFRER06dGD06Gsz2vcDD9zLkCHDKSwsZNddd2fSpMcYMuREBg06ZsMelJSWcZEpxvhJCKEfsCuwBTAL+FuMsWZDhZMkSZIkaWOSyVS/ESPOZcSIc5vcz2GHHclhh9Uf83H++Zesvt2mTRtuueXOLNP+R2VlJeeeeyYrV66iurqa/fc/kNNPP6ten0ceeZAnn/w9RUVFdOrUmcsvv5pvfWtTAO666zZefnkqAMOGncGBBx4MwJgxV/L++zPZY4+9OeuscwB44IEJbLttT/bZZ7/1ll8tozkjmUgXlF5Jf0mSJEmSpG+A1q1bc+ut4yktLaWqqoqRI09nwIA96Nt3x9V9evfuw4QJx1FSUsLkyY9z1123cd11P+Gvf53KjBnvcP/9v2HVqlWcd95Z7LbbHsyePZs2bdowceIjXHjh2SxbtoyKigreeutNhg07I4dHq6/LRbslSZIkSVKTCgoKKC0tBVKfYFddXUVBQUG9Pv367UJJSQkAO+zQl3nz5gDw4Yfvs/PO/SguLqZt27Zst11PXnnlZYqLi6msrKSmpoaqqioKCwu5777xa42QUnJYZJIkSZIkSetUXV3NsGEnc+SRB7HLLgPYYYe+jfZ98snfM2DAHgD07NmbadP+SkVFBYsWLeK1115l7tw5bL31NnTq1Jnhwwez55778Omns6ipqSGEPi11SFrPmjVdTpIkSZKkXOjcsR3FrfNrnETVyhoWLl6e6xgtpqioiAce+A1Lly7liisu5f33Z7Lttj3X6vf000/xzjtvc8cdvwBg11134+2332TEiOF06tSJvn13pKgo9W95wQX/WUdq1KiLGDXqCiZOvI+ZM9+lf/8BHHXU0S1zcFovLDJJkiRJkvJecetCpt8/N9cx6ul/WrdcR8iJsrIy+vXbhVdeeXmtItP06dP41a9+yR13/ILWrVuv3j506OkMHXo6ANdeO5otttiy3v1efPE5QujDihUr+PTTTxg7dhwXX3wuBx986OopeMp/+VUGliRJkiRJeWfhwoUsXboUgMrKCqZPn8ZWW21dr8+MGe9w4403MG7czXTuvMnq7dXV1SxevAiAmTPf5b333qV//91Wt1dVVfHoow9zyilDqaysXL3WU3V1DatWrdqwB6b1ypFMkiRJkiRtIJt0bEdRnk3zA6heWcMXzZjqt2DBfK6//hpqamqoqanhgAMOYs8992bChPH06bM9e+21L3feeRtffvklV131IwC6d+/OT396C1VVVZxzzpkAlJa24+qrx1Jc/J9yxKRJj3LooUdQUlJCz569qKioYMiQE9httz0pKyvL+lgrKys599wzWblyFdXV1ey//4FrLS6+cuVKfvzja4jxbTp06Mh11/2ETTftsbr9888/59RTv89pp/2Ak08+lYULF3LFFZeybNlSzjzzbPbZZz8AfvSji7n00svp2rU869xJZJFJkiRJkqQNpKh1IR/+z+e5jrGWrS/8VrP69+zZi/vv/81a2884Y8Tq27feeleD923Tpg0PPvhYo/s+/viTV98uKChgzJgbmpVtXVq3bs2tt46ntLSUqqoqRo48nQED9qBv3x1X93nyyd9TVlbGb387hWeeeZq7776d6677yer2O+64efVC5gDPPPM0gwYdy777HsCll57PPvvsx9SpL9CrV/jGFpjA6XKSJEmSJGkjVlBQQGlpKZCamlddXbV6St5Xpk59nkMPPQKA/fY7kFdf/Ru1tbUAvPDCc2y66WZss822q/sXFxdTUVHBypUrKSoqoqqqisceS035+yazyCRJkiRJkjZq1dXVDBt2MkceeRC77DKAHXboW6993ry5dOvWHUgVkNq1a8/ixYtZsWIFDz00kdNOO7Ne/4MOGsjUqc9z0UXncOqppzF58uMccshh3/hFyvNqulwI4RrgWmDHGOMbIYTdgHuAtsCHwOAYY359nIAkSZIkScprRUVFPPDAb1i6dClXXHEp778/c61PxmvIL3/5C44//uTVI6G+0r59e2688VYAlixZwoMPPsANN/ycn/70xyxduoQTTxxM377f2SDHks/yZiRTCKEfsBvwUfrnQuBB4JwYY2/gBWBc7hJKkiRJkqQkKysro1+/XXjllZfrbS8v78bcuXOA1JS65cuX0bFjR9566w3uvvs2jjvuSB577GF+/ev7+d3vflvvvhMnTmDIkOE888zTfOc7OzN69Bh++ctftNgx5ZO8GMkUQmgD3AmcBDyX3vzfQEWMcWr65/GkRjMNb+l8kiRJkiQpmRYuXEhxcTFlZWVUVlYwffq0tdZO2nPPffi//3uSvn2/w3PPPUu/fv0pKCjgrrsmrO5z33330LZtKccee8LqbbNmfczcuXPp128XZs58l9atW1NQUEBlZWWLHV8+yZeRTNcBD8YYP6yzbUvSo5oAYozzgcIQwiYtnE2SJEmSJCXUggXzOf/8sxg69ETOOGMI/fsPYM8992bChPFMnfo8AEcc8T0WL17MCScM4re/fYgRI87NaN+/+MVd/OAHZwNw0EGHMGXK7zjjjCF8//snbrDjyWc5H8kUQtgd2AX40YbYf5cu7TfEbte78vKyXEf4WpKaG5KbPam5IbnZk5obkps9qbkhudmTmhuSmz2puSG52ZOaG5KbPam5IbnZk5obkps9qblh3dlrq2ooKM6XsSkpXydTeXk/nnzyibW2X375ZXV+KuOee+5qcj8/+tGla20bP/7OOo9Txu9+91izsjVl9uzZjBo1igULFlBQUMDxxx/P0KH1R2AtXbqUyy67jM8++4zq6mqGDx/OscceC8DkyZO5++67ARg5ciRHH300K1euZOTIkcyZM4eTTjqJU045BYCrrrqKE088kR122CGrzDkvMgH7AtsDH4QQADYHngZuA7b6qlMIoStQE2P8ojk7X7BgGTU1qY8dzOf//PPmLW2yPV+zJzU3JDd7UnNDcrMnNTckN3tSc0Nysyc1NyQ3e1JzQ3KzJzU3JDd7UnNDcrMnNTckN3tSc0Nm2T+/6Z0WSpOZb13SZ525NxaLFlVw1lnnE0IfVqxYzvDhp7L99juzzTbbru7zq1/9kk033YKxY29k4cKFnHzysey++/58+eUKbr31du6771dAAaeffirf+c6u/Otf/6BPn77ccMPNjBx5OgcffBTvvjuD5csr6NZty4ye28LCgkYH9OS8JBljHBdj7BFj3DrGuDXwCXAIcCPQNoSwV7rrCGD9lQQlSZIkSZLyVNeuXQmhDwClpe3YeuutmT9/br0+BQUFrFixgtraWr78cgUdOnSgqKiIadNepn//XenQoSMdOnSgf/9dmTbtrxQVFVNZWUlVVRW1takBORMm3M2ZZ45cL5lzXmRqTIyxBjgVuDuE8C6pEU8bZEqdJEmSJElSvpo9+zNmzIh8+9t9620/9tjj+eijDxg0aCBDh57IBRdcSmFhIfPmzaNbt+6r+3Xr1p158+bRv/8AZs/+jLPOGsZxx53I1KnP07t3H7p2LV8vOfNhulw96dFMX93+K7Bj7tJIkiRJkiTlzooVKxg9ehQXXHAJ7drVn6Y2bdrL9OrVm9tuG8+nn37CRRedw0477dzovoqLi7n22usBqKqq4uKLz2XcuJu4/fabmTPncwYOPJy99tr3a2fN25FMkiRJkiRJ32RVVVVceeUoDj54IPvue8Ba7U899QT77nsABQUFbL75Fmy6aQ8++uhDysvLmTt3zup+c+fOoby8/milSZMeY+DAw3nzzX/Trl17xoz5CY888lBWeS0ySZIkSZIk5Zna2lp+8pPr2GqrbTjxxMEN9une/Vv8/e9/A+CLLxbw8ccf0aPH5gwYsDvTp09jyZIlLFmyhOnTpzFgwO6r77dkyRL++tcXGTjwcCoqKigsLKSgoIDKyoqsMufddDlJkiRJkqRvun/96588/fRTbLddT4YNOxmAs846mzlzPgdg0KDjGDbsDK6//lqGDDmB2tpaRo48j06dOgEwdOjpnHnmEACGDTuDDh06rt73Aw/cy5AhwyksLGTXXXdn0qTHGDLkRAYNOiarzBaZJEmSJEnSRmOTjm0pap1/5Y7qlVV8sfjLjPvvtNPOTJ369yb7dO1azi233Nlg2xFHfI8jjvheg23nn3/J6ttt2rRpdB/NlX/PuiRJkiRJ0tdU1LqYObe+nOsYa+l+we7r7pRwrskkSZIkSZKkrFlkkiRJkiRJUtYsMkmSJEmSJClrFpkkSZIkSZKUNYtMkiRJkiRJypqfLidJkiRJkpQHNunYlqLW+VWqqV5ZxReLv8yob34llyRJkiRJ+oYqal3M3Dv+L9cx6ul27qEZ93W6nCRJkiRJkrJmkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtYsMkmSJEmSJClrFpkkSZIkSZKUNYtMkiRJkiRJyppFJkmSJEmSJGXNIpMkSZIkSZKyZpFJkiRJkiRJWbPIJEmSJEmSpKxZZJIkSZIkSVLWLDJJkiRJkiQpaxaZJEmSJEmSlDWLTJIkSZIkScqaRSZJkiRJkiRlzSKTJEmSJEmSsmaRSZIkSZIkSVmzyCRJkiRJkqSsWWSSJEmSJElS1iwySZIkSZIkKWsWmSRJkiRJkpQ1i0ySJEmSJEnKmkUmSZIkSZIkZc0ikyRJkiRJkrJmkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtYsMkmSJEmSJClrFpkkSZIkSZKUNYtMkiRJkiRJylpxrgOEELoAvwa2A1YC7wJnxRjnhRB2A+4B2gIfAoNjjHNzlVWSJEmSJEkNy4eRTLXAz2KMIca4I/AeMC6EUAg8CJwTY+wNvACMy2FOSZIkSZIkNSLnRaYY4xcxxufqbHoF2Ar4b6Aixjg1vX08cHwLx5MkSZIkSVIGcl5kqis9emkk8AdgS+Cjr9pijPOBwhDCJjmKJ0mSJEmSpEbkfE2mNdwOLAPuAI5eHzvs0qX9+tjNBldeXpbrCF9LUnNDcrMnNTckN3tSc0Nysyc1NyQ3e1JzQ3KzJzU3JDd7UnNDcrMnNTckN3tSc0Nysyc1NyQ3e1JzQ3KzZ5o7b4pMIYSfA72AI2OMNSGEj0lNm/uqvStQE2P8ojn7XbBgGTU1tUB+/2POm7e0yfZ8zZ7U3JDc7EnNDcnNntTckNzsSc0Nyc2e1NyQ3OxJzQ3JzZ7U3JDc7EnNDcnNntTckNzsSc0Nyc2e1NyQ3Ox1cxcWFjQ6oCcvpsuFEG4gtQbToBhjZXrzq0DbEMJe6Z9HAI/lIp8kSZIkSZKalvORTCGEHYDLgRnAX0MIAB/EGI8OIZwK3BNCKAE+BAbnLKgkSZIkSZIalfMiU4zxTaCgkba/Aju2bCJJkiRJkiQ1V15Ml5MkSZIkSVKyWWSSJEmSJElS1iwySZIkSZIkKWsWmSRJkiRJkpQ1i0ySJEmSJEnKmkUmSZIkSZIkZc0ikyRJkiRJkrJmkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtYsMkmSJEmSJClrFpkkSZIkSZKUNYtMkiRJkiRJyppFJkmSJEmSJGXNIpMkSZIkSZKyZpFJkiRJkiRJWbPIJEmSJEmSpKxZZJIkSZIkSVLWLDJJkiRJkiQpaxaZJEmSJEmSlDWLTJIkSZIkScqaRSZJkiRJkiRlzSKTJEmSJEmSsmaRSZIkSZIkSVmzyCRJkiRJkqSsWWSSJEmSJElS1iwySZIkSZIkKWsWmSRJkiRJkpQ1i0ySJEmSJEnKmkUmSZIkSZIkZc0ikyRJkiRJkrJmkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtYsMkmSJEmSJClrFpkkSZIkSZKUNYtMkiRJkiRJyppFJkmSJEmSJGXNIpMkSZIkSZKyZpFJkiRJkiRJWbPIJEmSJEmSpKxZZJIkSZIkSVLWLDJJkiRJkiQpa8W5DrAuIYTewESgC7AAGBJjfDe3qSRJkiRJklRXEkYyjQfujDH2Bu4E7slxHkmSJEmSJK0hr0cyhRC6Af2Ag9KbHgbuCCGUxxjnrePuRQCFhQX1NhaWtVvfMdeLNXM22KesQwskaZ5McheVlbdAkubLJHvr9t1aIEnzZJK7JA9zQ2bZS9t3b4EkzZNJ7vbt8i83ZJa9Y2n+Zc8kd5c8zA2ZZe9W2rkFkjRPZrnz7zoEmWZv3wJJmiez3Ml939KttLQFkjRPZrlLWiBJ82WSvby0dQskaZ5Mcm9SWtQCSZovo+t/af79zT6T3G3zMDdk+v48/7Jnkru4Q3LP86IOrVogSfNk9vtzmxZI0nyZZW/bAkmap27uOrfXOrELamtrWyhS84UQ/hv4VYxxhzrb3gIGxxhfW8fd9wJe3JD5JEmSJEmSvqH2BqbW3ZDXI5myNJ3UAc8GqnOcRZIkSZIkaWNQBGxKqu5ST74XmWYBm4UQimKM1SGEIqBHevu6VLJGRU2SJEmSJElZe6+hjfk3obWOGONc4HXgpPSmk4B/ZLAekyRJkiRJklpQXq/JBBBC6ANMBDoDC4EhMcaY21SSJEmSJEmqK++LTJIkSZIkScp/eT1dTpIkSZIkSclgkUmSJEmSJElZs8gkSZIkSZKkrFlkkiRJkiRJUtaKcx0g34UQugC/BrYDVgLvAmcBC4CXgNJ019nAiBjjhzmI2aAQws+BY4GtgR1jjG+EELYGptTp1gnoEGPcpKXzNaah3E1tzxeNnSsxxnkhhIeA/YFNgbIY47LcJV1bE8/5EcBYoCD9NSbGOClXORvSRPYS4Bbgu0AF8HKM8Qe5yrmmJnJ/SCpvRbrrD2OMT+ciY2PW9X8xhHANcG1DbbnUxHM+BdgGqAGWAefFGF/PTcp1y/fXwqaEEHqT+sTYLqSuo0NijO/mNlXDmjhfEnMMkIzX8YYk4f1KY/L9+tOUJFyDmpKv15+mJOUa1MjvFY2+981Z0DU08btcZ+AeUu/Nq4DpwNkxxi9zFHUtTVyHDif1ut4K+AIYFmP8IFc517SO34l2I/W8twU+BAbHGOfmKmtTknB+NyWX54kjmdatFvhZjDHEGHcE3gPGxRhrgIExxp1ijDsB/wfcnMugDZgC7AN89NWGGOOHMcadv/pK9/lNTtI1bgpr5F7H9nzR4LmSbrsP2DlXwTIwhTWe2xBCAakX1lPT58qpwMQQQr69bkyh4fPiZ6TeJPdO/3tc1cK51mUKjZ/Px9X5f5qPb+6n0Ej2EEI/YLeG2vLAFBrOPTT9Wv5fwM+BX7Z0sGaaQn6/FjZlPHBnjLE3cCepN5r5agoNP8+JOYYEvY6vJSHvVxqT79efdcn3a1CD8vz605SkXIOmsPZrYlPvffNFYxlXAhfHGPsA3yE1cODS3MVs0BTWfn/emdQfOk5MH8+9wN05Sde4Bp/z9LXnQeCc9DX0BfLvfKkrCed3g3J9njiSaR1ijF8Az9XZ9AowMt22uM72DqT+ApE3YoxTAUIIDbaHEFoDpwCHtGCsdWos97qOJ9fWca78GfI6e2PPbQ3QMX27EzA7XWDNGw1lDyG0B4YAm8cYa9P95uQkYCPy/XxuSmPZQwhtSP3SfRL1/y/khSZeW+q+lnckz17L15TUcyeE0A3oBxyU3vQwcEcIoTwf/yrYyGtLoo4hLe9fx9clX9+vNCQJ15+NUb5ff5qSlGtQQ6+JTb33zReNZUzPPvkw3acmhPA3YPuWzteURq73PYE5McYZ6Z+fAn4dQugaY5zfwhEb1MR58d9AxVfHReqPNh8Cw1syX6aScH43IafnSd7/JSufpKuvI4E/1Nn2VAjhc+AE4PxcZfuajgI+jTG+lusgG5uGzpWkSb85Ph74fQjhI1J/TRmS01CZ247UNJZrQgh/DyE8F0LYK9ehmuGhEMK/Qgh3hRA65TpMM1wHPJhP04YzFUKYEEL4GLgeGJrrPBupLUhdc6oB0t8/S29PikQdQ8Jfx+tK0vuVpF9/IJnXoMRef2DjuAYl4b1vYxlDCG1JFTryNnsdM4BvhRD6p38+Jf19yxzladIaz/mW1J9hMx8oDCEkYRp03p/fa8jpeWKRqXluJzVX+o6vNsQYDwN6kPpr5pU5yvV1DSd/h+Qm3VrnStKEEIqBy4HvxRi3Ao4EHk3/lTbfFQHbAv+IMe4C/BCYFELokNtYGdk7PQW3P6n1UxJxDoUQdgd2Ae7KdZavI8Z4RoxxS+AK4MZc55HWh4S/jteVpPcrSb7+QAKvQUm//sBGcw1KwnvftTKmXycfAf4cY8z7AkJ65NsJwC0hhL8D3YBFpNaVykdJOC8ykajjyPV5YpEpQ+mF13oBJ6w5zDz9832k1jpIhBDCZsC+wEO5zrKxaepcSZidgR4xxpcA0t+Xk2dDiRvxMakX0YcBYozTgPlA71yGykSMcVb6eyWpN8x75jZRxvYldW58kF44dnPg6RDCwTlN1Uwxxl8D+6cXe9T6NQvYLIRQBJD+3iO9PSmSdgw7k9zXcSCR71cSe/2BxF6DNorrDyT3GpSE974NZUy/hj8ELCRBM1JijM/EGPdKF7LvILWI9ns5jrWWBp7zj4Gt6rR3BWrS09LyVhLO74bk8jyxyJSBEMINpOaQDkpfdAkhlKf/Y3zl+8C/c5HvaxoK/G+McUGug2xMGjpXEuwTYPOQnggeQtge6E4eXsTWlB5++xfS66akPw2qGzAzl7nWJYTQLoTQMX27ADgReD2noTIUYxwXY+wRY9w6xrg1qfPnkBjjn3IcrUkhhPYhhC3q/HwkqU/gyOs3PEkUU58e8zqpNVNIf/9HHq9ltJYEHkNiX8frSNT7laRefyC516CkXn9g47gGJeG9byO/yxUCDwDVwOlfraGWBCGEb6W/FwI3AONjjMtzm6q+Rs6LV4G2daYQjwAey0W+TCXh/G5MLs+TgtraxPx/yokQwg7AG6TmNX71kZYfAFeTemFqRWo48QfAhTHG93MQs0EhhNuAY4Bvkfor2oIY4w7pthnA+THGP+YwYoMay93U8eSDxs6VGOPRIYRJwK7AZqTW73gjxpg3C5g28ZyfAvyI/yxCeU2McUpuUjasiezbkppe0QVYBYyOMf5f7pLW11BuUlNZfkdqukUR8Bap/6ezc5WzIZn8X0z/NfmImEcfId3Ic34A8HugHak3ml8Al+bz2i/5/lrYlBBCH1KfdtKZ1F+Oh8QYY25TNayJ15bEHANAEl7Hm5LP71cak+/Xn8akc+f9NWhd8vH605gQQncScg1q5Bp6PI28981JyAY08bvcBODJdFt1evtLMcZzWjxkI5q4Dk0gNcqwNfAn4KIYY0Xukta3jt+J9iD1qawlpBb9HpyvH47Q1HHkLlXmcnmeWGSSJEmSJElS1pwuJ0mSJEmSpKxZZJIkSZIkSVLWLDJJkiRJkiQpaxaZJEmSJEmSlDWLTJIkSZIkScqaRSZJkqQcCSEsS390/IbY95shhP0aadsvhPDJhnhcSZL0zVWc6wCSJEnfVDHG9htw3ztsqH1LkiQ1xJFMkiRJkiRJypojmSRJkuoIIfwQOB/oAHwGnA3sDfQFqoHDgHeB02KM/0zfpwdwO7APsAy4JcZ4W7qtCPghcDrQDZgBDIoxzgoh1AK9YowzQwhtgOuB44E2wGTgohjjlyGErsADwF5ADfAmsG+MsaaJ4/gQOCPG+EwIoS1wN/A9YDZw/3p4qiRJkupxJJMkSVJaCCEA5wL9Y4xlwCHAh+nm7wGPAZsAvwGmhBBahRAKgSeAfwKbAQcCF4YQDknf72LgJFLFqQ7AcGBFAw8/DugN7Az0TO/r6nTbJcAnQDnQHbgCqG3GoV0DbJf+OgQY2oz7SpIkZcSRTJIkSf9RTWoU0bdDCPNijB8CpGpPvBpjfDz9882kCj+7ASuB8hjjdel9vB9CuBc4EXgaOAMYFWOM6fZ/rvmgIYQC4AfAd2KMX6S33UCqmHU5sArYFNgqxjgTeLGZx3U8cHZ631+EEG7jPwUsSZKk9cIikyRJUlp62tqFwLXADiGEp0mNRAKYVadfTfrT2XqQGlHUI4SwqM6uivhPIWgL4L11PHQ5UAq8mi5oARSk9wNwYzrTn9Ltv4gxjmvGofWomx/4qBn3lSRJyohFJkmSpDpijL8BfhNC6ADcA/yUVJFoi6/6pKfIbU5qzaYq4IMYY69GdjmL1DS1N5p42PnAl8AOMcZPG8i0lNTIqUtCCH2BP4cQpscYn83wsGan87+Z/nnLDO8nSZKUMYtMkiRJaek1mTYDXgIqSBV+vhpN9N8hhGOAP5BaGLwSeIXUQtxL0wuG30Zq+tz2QNsY43RgAjA2hPAWMBPYEfg0xrjgq8dNj4y6F7glhHBujHFuCGEzoG+M8ekQwhHAO6SKXYtJTetrdNHvBjwKXB5CmAa0A85r7nMjSZK0Li78LUmS9B9tSC3APR/4nNSnwV2ebvs9cAKwEDgVOCbGuCrGWA0cQWrB7g/S950AdEzf72ZSRZ4/AUuA+4C2DTz2D0kVoV4JISwBngG+mjvXK/3zMuBl4K4Y41+acVxjSE2R+yCd49fNuK8kSVJGCmprm/PBJJIkSd88IYRrgZ4xxsG5ziJJkpSvHMkkSZIkSZKkrLkmkyRJUgKFELYE3mqk+dsxxo9bMo8kSZLT5SRJkiRJkpQ1p8tJkiRJkiQpaxaZJEmSJEmSlDWLTJIkSZIkScqaRSZJkiRJkiRlzSKTJEmSJEmSsmaRSZIkSZIkSVn7/wJbZbKHzxxRAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plot_count(feature='species_id',desc='Species Count Plot',df=train_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2021-02-02T12:42:37.705256\n image/svg+xml\n \n \n Matplotlib v3.3.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAAFSCAYAAADFO6cJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjV0lEQVR4nO3da7hdVX0v/u/eCSBXG0MSLnKRKgMP3goHpecgqEcUL/VU8fAAAqXiBVvUVnsUqdz0gNRLrVZUDlqJXKVYRBSBipWLilqqVJT8oB5AkFsIoVwTIHv/X6wF/23ITnYgM2tn5/N5nvWsNceYY83f3C9gPd+MMebQ6OhoAAAAAKArw4MuAAAAAICpTQAFAAAAQKcEUAAAAAB0SgAFAAAAQKcEUAAAAAB0SgAFAAAAQKcEUAAAAAB0avqgCwAAWBO01nZL8vEkOyZZkuTaJH9RVT/t6Hr3jzncIMni/nWT5J1VdXoX1wUA6IIACgBgBVprmyT5VpJ3JTk7ybpJXppeKNSJqtpozPVvTPK2qvpuV9cDAOiSAAoAYMW2T5KqOrN//FCSi5OktTac5Igkb0+yfpILk7y7qv6ztbZtkhuSHJzko+nNZPp0VR3XH7t+ki8meUOS25N8Jcl7quqZyyqitbZu/7w9quoX/bbZSW5Msk16s7NOS/L5JO9Lcn+Sv35stlRrbb0kxyXZJ8l6Sc5N8pdV9VBrbdMkpyTZLclIkl/2rzPypP9qAAB99oACAFix65Isaa3Nba29prU2Y0zfwf3Xy5Nsl2SjJJ9bavxuSVqS/5HkqNbac/vtRyfZtj9uzyQHLK+Iqno4yVlLnbdfkkuqan7/eLMkmybZMsmfJPm/rbXW7zshvTDtRUme3T/nqH7f+5PckmRWkjnphWqjy6sHAGCiBFAAACtQVfemFyKNJjk5yfzW2jdba3OSvCXJ31bV/6uq+5N8KMm+rbWxM82PraqHqurqJFcneWG/fZ8kx1fVwqq6JclnJ1DO3CT7tdaG+scHJjl1qXOOrKrFVXVpkm8n2ad//jvSm/F0d1Xdl+T4JPv2xzySZPMk21TVI1V1eVUJoACAVcISPACACaiqa9Ob6ZTW2g7pLXX7uyRbJLlpzKk3pfcba86YttvHfH4wvVlS6Y+9eUzf2M/j1fHj1tqDSV7WWrstvZlM3xxzysKqemCperZIb2bTBkmu+v8nRGUoybT+508kOSbJxf3+/1tVJ6yoHgCAiRBAAQCspKqa11o7Jck7k9ya3v5Lj9k6yaNJ7kiyzL2cxritf86v+sdbTbCEuektw7s9yTlVtWhM34zW2oZjQqitk1yT5K709q7asap+u4x7ui+9ZXjvb609L8n3Wms/rapLJlgTAMC4BFAAACvQn/H0uiRfq6pbWmtbpbf30pVJfpzkg6217ySZn96ytq9V1aNjZhqN5+wkH2qt/TS92UmHTbCk09JbyndfekvwlnZsa+2IJC9J8vokR1fVSGvt5CSfbq0dVlV3tta2TPK8qrqotfb6JPOS/DrJfyZZkt5m5AAAT5k9oAAAVuy+9MKcH7fWHkgveLomvRlD/5DeHkyXpffEu0VJ3j3B7/1Ieht/35Dku0nOSbJ4RYOq6uYk/5benlSXL9V9e5KF6c3MOj3JoVU1r9/3wST/keTK1tq9/Ws+lpI9p398f5IfJfl8Vf3LBO8DAGC5hkZH7S0JADAZtNbelWTfqtpjAuf+Q5Jbq+rDY9peluS0qlrR0j8AgNXKEjwAgAFprW2eZLv0Zhw9J70ZVZ+bwLhtk7wpyR90WR8AwKpiCR4AwOCsm+Sk9Jb4fS/JeUk+v7wBrbWPprf87xNVdUPnFQIArAKW4AEAAADQKTOgAAAAAOjU2roH1HpJdklyW3qPGAYAAADgqZmWZPMkP81ST/ZdWwOoXfLERxYDAAAA8NS9NMkVYxvW1gDqtiRZuPCBjIzYAwsAAADgqRoeHsqMGRsm/dxlrLU1gFqSJCMjowIoAAAAgFXrCdsd2YQcAAAAgE6trTOgAH7H1752es4//7wMDSXbbffsHHHE0bnmmn/PiSf+XR555JG09twcfviRmT592f/ZfOCB+3PAAfvkpS/dI+973wfz4IMP5M/+7O2P98+ff0de9arX5r3vfX/OOeesnHfeP2XOnM3ysY99Kuuss06uvvrnufTSS/Ke97x/dd0yAADAamMGFLDWmz//zpxzztfy5S9/NaeeenZGRkbyz/98YY477pgcc8zxOfXUs7PZZpvnwgu/Ne53nHzyF/PCF/7B48cbbLBhTjnljMdfc+Zsnj32eHmS5OKLL8zcuWflec97QX784x9ldHQ0c+d+KQcf/LbO7xUAAGAQBFAASZYsWZLFixfn0UcfzeLFi7L++utn+vTp2XrrbZIku+zyknz/+99b5th5867NwoUL8uIX77rM/t/85qbcc8/CxwOq0dHR/nUWZ/r06bnooguy667/LZts8vRubg4AAGDABFDAWm/WrNnZd98Dsvfer88f//Fe2XDDjfKKV+yZJUuWZN68XyVJ/uVfLsmdd97xhLEjIyP53Oc+nT//878Y9/svueTivOIVe2ZoaChJsvfe++Sd7zw4d9xxe17wghfmggvOz5vetE8n9wYAADAZ2AMKWOvde++9ueKKS3P22d/MxhtvnCOP/GAuvvg7OfbY4/PZz/5tHnnk4eyyy64ZHp72hLHnnvuP+cM//O+ZPXvOuN9/ySUX58Mf/sjjx3vt9brstdfrkiRf+crJefOb982VV/4gF1747cyePSeHHfaXGR727wMAAMDUIYAC1nr/+q8/yeabb5EZM2YkSXbf/eX5xS/+Pa9+9Wvz+c9/KUnyk59cmZtv/s0Txl5zzS9y9dU/y7nnnpOHHnowjzzyaNZff4O8613vTpJcf/11efTRJdlhh+c+Yexdd83Ptdf+Mn/6p2/PYYe9I5/5zBcyd+6Xc9VVP8kuuyx7OR8AAMCaSAAFrPXmzNksv/zlNVm0aFHWW2+9XHXVT7PDDs/NwoV3Z8aMZ+Thhx/O6afPzUEHvfUJY48++v88/vmCC87PvHm/ejx8SpLvfvei7Lnnq5d53ZNP/kIOOeTQJMnixYsyNDSU4eHhLFq0aBXfIQAAwGAJoIC13o47Pi8vf/n/yFvf+pZMmzYt22/f8oY3vCknn/yF/PCHl2dkZCRvfOObs/POuyRJ5s37Vb7xja/n8MOPXOF3f+97380nP/mZJ7Rfd928JElrOyRJ9txzrxx00L6ZPXtO9t//oFV4dwAAAIM3NDo6OugaBmHbJDcsWHB/Rkam5v1vvMnT8rT11hl0GQCwWixa/Ejuu9fsQQCAQRoeHsrMmRslybOS3Di2zwyoKepp662T/T9w+qDLAIDV4oyPvyX3RQAFADBZecwSAAAAAJ0SQAEAAADQKQEUAAAAAJ0SQAEAAADQKQEUAAAAAJ0SQAEAAADQKQEUAAAAAJ0SQAEAAADQKQEUAAAAAJ0SQAEAAADQKQEUAAAAAJ0SQAEAAADQKQEUAAAAAJ0SQAEAAADQKQEUAAAAAJ0SQAEAAADQqemr4yKttU8m2TvJtkmeX1XX9Nu3TzI3ycwkC5IcVFXXP5U+AAAAACaX1TUD6htJdk9y01LtX0xyYlVtn+TEJCetgj4AAAAAJpHVMgOqqq5Iktba422ttdlJdkqyZ7/pzCSfa63NSjL0ZPqqan7HtwIAAADASlotAdQ4tkry26pakiRVtaS1dmu/fehJ9q1UADVz5kar7GYAgMGaNWvjQZcAAMA4BhlADdyCBfdnZGR00GV0wo9wANY28+ffN+gSAADWasPDQ+NO9hnkU/BuTrJla21akvTft+i3P9k+AAAAACaZgQVQVXVnkp8n2a/ftF+Sn1XV/Cfbt5pKBwAAAGAlrJYleK21zyZ5U5LNkny3tbagqnZMcmiSua21o5IsTHLQmGFPtg8AAACASWRodHRq7oG0AtsmuWGq7wG1/wdOH3QZALBanPHxt9gDCgBgwMbsAfWsJDf+Tt8gCgIAAABg7SGAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOjV90AUkSWvt9Uk+mmSo/zq2qv6ptbZ9krlJZiZZkOSgqrq+P2bcPgAAAAAmj4HPgGqtDSU5NcmBVfWiJAcmmdtaG07yxSQnVtX2SU5MctKYocvrAwAAAGCSGHgA1TeS5On9z7+X5LYkmybZKcmZ/fYzk+zUWpvVWps9Xt9qqxgAAACACRn4EryqGm2t7ZPkvNbaA0k2TvLaJFsl+W1VLemft6S1dmu/fWg5ffMneu2ZMzdatTcDAAzMrFkbD7oEAADGMfAAqrU2PcmHkvzPqvpBa+2/Jzk7vaV4nVqw4P6MjIx2fZmB8CMcgLXN/Pn3DboEAIC12vDw0LiTfSbDErwXJdmiqn6QJP33B5IsSrJla21akvTft0hyc/81Xh8AAAAAk8hkCKBuSfLM1lpLktbac5PMSXJ9kp8n2a9/3n5JflZV86vqzvH6VmPdAAAAAEzAwAOoqro9ybuSnNNauzrJWUneWlV3Jzk0ybtba9cleXf/+DHL6wMAAABgkhj4HlBJUlWnJzl9Ge3zkrxknDHj9gEAAAAweQx8BhQAAAAAU5sACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOTTiAaq391Tjt71t15QAAAAAw1azMDKijxmn/8KooBAAAAICpafqKTmitvaL/cVpr7eVJhsZ0b5fkvi4KAwAAAGBqWGEAleTL/fenJfmHMe2jSW5P8u5VXRQAAAAAU8cKA6iqelaStNa+WlUHdVFEa+1pST6d5JVJFiX5UVW9o7W2fZK5SWYmWZDkoKq6vj9m3D4AAAAAJo8J7wE1NnxqrQ2Pfa2COj6eXvC0fVU9P8mR/fYvJjmxqrZPcmKSk8aMWV4fAAAAAJPERJbgJUlaazulF/S8IL3leElvP6jRJNOebAGttY2SHJTkmVU1miRVdUdrbXaSnZLs2T/1zCSfa63N6l93mX1VNf/J1gIAAADAqjfhACq95W7nJ3lrkgdXYQ2/n94SuqP7m5zfn96T9R5K8tuqWpIkVbWktXZrkq3SC6DG6xNAAQAAAEwiKxNAbZPkrx+bpbQKTUvvaXo/q6r/3Vp7SXpB1/9axdd5gpkzN+r6EgDAajJr1saDLgEAgHGsTAB1bpJXJbloFdfwmySPpreMLlX149baXenNgNqytTatP8NpWpItktyc3gyo8fombMGC+zMysqrztMnBj3AA1jbz59836BIAANZqw8ND4072WZkA6mlJzm2tXZHk9rEdT+XpeFV1V2vtX9Lbz+ni/tPtZie5LsnPk+yX5LT++88e2+OptTZuHwAAAACTx8oEUL/qv7pwaJJ/aK19KskjSQ6sqntaa4cmmdtaOyrJwvQ2Kx87Zrw+AAAAACaJCQdQVXVsV0VU1f9L8rJltM9L8pJxxozbBwAAAMDkMeEAqrX2ivH6qup7q6YcAAAAAKaalVmC9+WljmclWTfJLek9xQ4AAAAAnmBlluA9a+xx/8lzH07ikTMAAAAAjGv4yQ6sqiVJjkvygVVXDgAAAABTzZMOoPr2TDKyKgoBAAAAYGpamU3Ib04yOqZpgyRPS/Jnq7ooAAAAAKaOldmE/ICljh9Icl1V3bsK6wEAAABgilmZTcgvTZLW2nCSOUnuqCrL7wAAAABYrgnvAdVa27i19tUkDyX5bZKHWmtzW2tP76w6AAAAANZ4K7MJ+d8n2TDJ85Os33/fIMlnO6gLAAAAgCliZfaA2ivJdlX1YP/4utbanyb59aovCwAAAICpYmVmQC1KMmuptk2TLF515QAAAAAw1azMDKgvJfnn1trfJrkpyTZJ/jLJyV0UBgAAAMDUsDIB1HHpbT7+liRbJLk1ycer6stdFAYAAADA1LAyS/A+k6Sq6pVV9V+q6pVJrm2t/V03pQEAAAAwFaxMALVfkn9dqu2qJPuvunIAAAAAmGpWJoAaTTJtqbZpK/kdAAAAAKxlViY8ujzJR1trw0nSfz+m3w4AAAAAy7Qym5C/N8m3ktzWWrspydZJbkvyR10UBgAAAMDUMOEAqqpuaa3tlOTFSbZKcnOSn1TVSFfFAQAAALDmW5kZUOmHTVf2XwAAAACwQjYQBwAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOjV90AWM1Vo7OskxSZ5fVde01nZNclKS9ZPcmOSAqrqzf+64fQAAAABMHpNmBlRrbackuya5qX88nOS0JH9eVdsnuSzJCSvqAwAAAGBymRQBVGttvSQnJnnXmOadkyyqqiv6x19Mss8E+gAAAACYRCbLEryPJDmtqm5srT3WtnX6s6GSpKruaq0Nt9aesby+qrp7ohedOXOjVVM9ADBws2ZtPOgSAAAYx8ADqNbaHyb5r0kOX93XXrDg/oyMjK7uy64WfoQDsLaZP/++QZcAALBWGx4eGneyz2RYgrdHkucmuaG1dmOSZya5KMmzk2zz2EmttU2TjPRnOP1mOX0AAAAATCIDD6Cq6oSq2qKqtq2qbZPckuTVST6RZP3W2m79Uw9N8o/9z1ctpw8AAACASWTgAdR4qmokyYFJvtBauz69mVKHr6gPAAAAgMll4HtALa0/C+qxzz9M8vxxzhu3DwAAAIDJY9LOgAIAAABgahBAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANApARQAAAAAnRJAAQAAANCp6YMuoLU2M8mpSX4/ycNJrk/yzqqa31rbNclJSdZPcmOSA6rqzv64cfsAAAAAmDwmwwyo0SQfr6pWVc9P8uskJ7TWhpOcluTPq2r7JJclOSFJltcHAAAAwOQy8ACqqu6uqu+PaboyyTZJdk6yqKqu6Ld/Mck+/c/L6wMAAABgEhl4ADVWf2bTu5J8M8nWSW56rK+q7koy3Fp7xgr6AAAAAJhEBr4H1FL+Psn9ST6X5I1dX2zmzI26vgQAsJrMmrXxoEsAAGAckyaAaq19MslzkvxRVY201n6T3lK8x/o3TTJSVXcvr29lrrlgwf0ZGRldNTcwyfgRDsDaZv78+wZdAgDAWm14eGjcyT6TYglea+349PZ1+uOqWtxvvirJ+q213frHhyb5xwn0AQAAADCJDHwGVGttxyQfSnJdkh+21pLkhqp6Y2vtwCQntdaeluTGJAckSX+G1DL7AAAAAJhcBh5AVdUvkwyN0/fDJM9f2T4AAAAAJo9JsQQPAAAAgKlLAAUAAABApwRQAAAAAHRKAAUAAABApwa+CTkAAAATd/zxx+aHP7wiM2bMyKmnnp0kuffe/8xRR30ot99+WzbbbPN85CMnZJNNNnnC2N13f3G22+7ZSZI5c+bkb/7m00mSj33sI5k379oko9lqq61zxBHHZIMNNsg555yV8877p8yZs1k+9rFPZZ111snVV/88l156Sd7znvevtnsG1nxmQAEAAKxBXvvaP8qnPvX3v9N22mmnZOedX5yzzjo3O+/84px22inLHLveeuvllFPOyCmnnPF4+JQk73nP+zJ37pmZO/eszJmzWb7+9V6wdfHFF2bu3LPyvOe9ID/+8Y8yOjqauXO/lIMPfltn9wdMTQIoAACANciLXrTTE2Y3XX75pXnNa16fJHnNa16fyy///kp954YbbpQkGR0dzeLFizM0lMePH3300SxevDjTp0/PRRddkF13/W/ZZJOnP8W7ANY2AigAAIA13MKFd2fTTTdNksycOTMLF969zPMefvjhHHLIgXnHOw7OZZd9/3f6jj/+2LzhDa/OTTfdmDe/ed8kyd5775N3vvPg3HHH7XnBC16YCy44P2960z6d3gswNdkDCgAAYAoZGhpKMrTMvnPOOT+zZs3Ob397S9773nfl93//2dlyy2cmSY444ugsWbIkn/70J3LJJRfnda97Q/ba63XZa6/XJUm+8pWT8+Y375srr/xBLrzw25k9e04OO+wvMzxsXgOwYv5LAQAAsIabMeMZueuuu5Ikd911V2bMmLHM82bNmp0k2XLLZ+YP/mDnXHfdvN/pnzZtWl75ylfl0ku/9zvtd901P9de+8vsvvvLctZZp+fYYz+WjTbaOFdd9ZMO7gaYigRQAAAAa7jddtsj3/nOt5Ik3/nOt/LSl+7xhHPuvffePPzww0mSe+65J7/4xdXZdtvtMjo6mltuuTlJb8+nK664LFtvve3vjD355C/kkEMOTZIsXrwoQ0NDGR4ezqJFizq8K2AqsQQPAABgDXL00Ufk5z+/Kvfcc0/e+MbX5pBD3pEDDviTHHXUh/Ltb5+XOXM2z0c/+rEkybx5v8o3vvH1HH74kbnpphvyiU8cn6Gh4YyOjuSAA/4kz3rWdhkZGclxxx2dBx54IKOjo3n2s7fPX/3V4Y9f77FZUq3tkCTZc8+9ctBB+2b27DnZf/+DVv8fAFgjDY2Ojg66hkHYNskNCxbcn5GRqXn/s2ZtnP0/cPqgywCA1eKMj78l8+ffN+gyeJJmPH3dTF93vUGXAQCrxaMPL87C/3x40GV0Ynh4KDNnbpQkz0py49g+M6AAABio6euul6s+/rZBlwEAq8XOH/hSkqkZQC2PPaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6JQACgAAAIBOCaAAAAAA6NT0QRfwVLTWtk8yN8nMJAuSHFRV1w+2KgAAAADGWtNnQH0xyYlVtX2SE5OcNOB6AAAAAFjKGjsDqrU2O8lOSfbsN52Z5HOttVlVNX8Fw6clyfDwUIcVDt6mMzYcdAkAsNpM9f+vT3XrbjJz0CUAwGozVX+3jLmvaUv3DY2Ojq7ealaR1trOSb5aVTuOaftVkgOq6t9WMHy3JJd3WR8AAADAWuqlSa4Y27DGzoB6in6a3h/jtiRLBlwLAAAAwFQwLcnm6eUuv2NNDqBuTrJla21aVS1prU1LskW/fUUWZ6kkDgAAAICn7NfLalxjNyGvqjuT/DzJfv2m/ZL8bAL7PwEAAACwGq2xe0AlSWtthyRzk8xIsjDJQVVVg60KAAAAgLHW6AAKAAAAgMlvjV2CBwAAAMCaQQAFAAAAQKcEUAAAAAB0SgAFAAAAQKemD7oAgDVda+2TSfZOsm2S51fVNYOtCABgxVprRyc5Jn6/AKuBGVAAT903kuye5KYB1wEAMCGttZ2S7Bq/X4DVRAAF8BRV1RVVdfOg6wAAmIjW2npJTkzyrkHXAqw9BFAAAABrl48kOa2qbhx0IcDaQwAFAACwlmit/WGS/5rk84OuBVi7CKAAAADWHnskeW6SG1prNyZ5ZpKLWmuvGmhVwJTnKXgAAABriao6IckJjx33Q6jXewoe0DUzoACeotbaZ1trt6T3L4jfba39ctA1AQAATCZDo6Ojg64BAAAAgCnMDCgAAAAAOiWAAgAAAKBTAigAAAAAOiWAAgAAAKBTAigAAAAAOjV90AUAADB4rbWtk/wqydOrasky+o9J8uyqOmB11wYArPkEUAAAk0BrbTTJc6rqPwZx/ar6TZKNBnFtAGDqswQPAAAAgE6ZAQUAsAyttQ8meU+STZLcmuTPklyR5G+S7NM/7ewkH6yqxa21lyU5Lcmnk3wwyZIkR1TVV/rfNzPJKUn2SFJJLkrysqrarbV2Wf/7ru7PhDokyZFJPlRV5/fHr5PktiR7JlmY5IYk70xyTJKhJJ+qqk/2zx1O8oEkb0/ye0kuSXJoVd29nPvdtv+d61TVo621Z/Xr3SnJlf2aAQCeFDOgAACW0lprSQ5LsktVbZzk1UluTPLXSXZN8qIkL0zy4iQfHjN0syRPT7JleiHSia21Gf2+E5M80D/nT/qvJElV7d7/+MKq2qiqvpbkq0nG7rf02iS3VdXPxrS9PMlzkrwqyQdba6/st787yR+nF3ZtkV5gdeJK/hnOSHJVkk2TfHRsvQAAK0sABQDwREuSrJfkv7TW1qmqG6vq10nekuQjVXVnVc1PcmySA8eMe6Tf/0hVXZDk/vTyrGlJ9k5ydFU9WFW/SjJ3BTWcluS1rbVN+scHJjl1qXOOraoHquoXSb6SZL9++6FJ/rqqbqmqxenNknpza21Cs9/7G5LvkuTIqlpcVZclOX8iYwEAlkUABQCwlP5G4H+RXnBzZ2vtrNbaFunNJrppzKk39dses6CqHh1z/GB6G3vPSm/rg5vH9I39vKwabk3ygyR7t9Z+L8lrkpy+1Gljv2NsLdskObe1dk9r7Z4k16YXqs1Z3jXH2CLJwqp6YKnvBwB4UuwBBQCwDFV1RpIz+jOQTkpv76db0wt3ftk/bet+24rMT/Jokmcmua7fttUExs1N8rb0frP9qKp+u1T/VknmLaOWm5O8tap+MIFrLMttSWa01jYcE0JtnWT0SX4fALCWMwMKAGAprecVrbX1kixK8lCSkSRnJvlwa21Wa23TJEelt1RuuapqSZJ/SnJMa22D1toOSQ5a6rQ7kmy3VNs30tsE/L3p7Qm1tCP737djkj9N8rV++xeTHNda26Z/P7Naa/9zRXWOqfemJP+a5NjW2rqttd2S/NFExwMALE0ABQDwROslOSHJXUluTzI7yYeS/J/0gpl/T/KLJP/Wb5uIw9LboPz29PZyOjPJ4jH9xySZ2182t0+SVNVDSb6e5FnpBVhLuzTJf6T3lLtPVtXF/fbPJPlmkotba/el9xS7l0ywzsfs3x9zd5Kjs+wADABgQoZGR82kBgBY3Vprf5Nks6pa7tPlWmtHJdm+qg4Y07ZtkhuSrLPUnlMAAJOSPaAAAFaD/rK7ddObObVLkkPS299peWOe0T/vwOWdBwAw2QmgAABWj43TW3a3RXr7PX0qyXnjndxae3uSv0tyalVdtioKaK29Jb0N1Zd2U1XtuCquAQCwLJbgAQAAANApm5ADAAAA0CkBFAAAAACdEkABAAAA0CkBFAAAAACdEkABAAAA0CkBFAAAAACd+v8AxFnyQnHGjREAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plot_count(feature='songtype_id',desc='SongTypes',df=train_data)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_feature_distribution(data_df, feature, feature2, title, kde_mode=False, hist_mode=True):\n", + " f, ax = plt.subplots(1,1, figsize=(12,6))\n", + " for item in list(data_df[feature2].unique()):\n", + " d_df = data_df.loc[data_df[feature2]==item]\n", + " try:\n", + " sns.distplot(d_df[feature], kde=kde_mode, hist=hist_mode, label=item)\n", + " except:\n", + " pass\n", + " plt.legend(labels=list(data_df[feature2].unique()), bbox_to_anchor=(1, 1), loc='upper right', ncol=2)\n", + " plt.title(title)\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2021-02-02T12:42:39.922383\n image/svg+xml\n \n \n Matplotlib v3.3.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsMAAAGJCAYAAABvpz7VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABGtElEQVR4nO3deZxcVZ3w/09VVy+J6SwkISQhAcJyYJDFCKPOA+rMz4Fx1BkV8FEeRUfFgUF84kgGgmwBJWhYAiRCBAGBGRhHxcdnhEF9wGjcEAEVBg8qhiUJSchGmqTXqt8ftzp2kl6qO7e6Ormf9+uVV7rucs637rm36lunzj2VK5VKSJIkSVmUr3UAkiRJUq2YDEuSJCmzTIYlSZKUWSbDkiRJyiyTYUmSJGWWybAkSZIyy2RYe7UQws0hhIvT3na4hRDODiGsCSG0hBAm1jqeWgshrAghvK3894UhhFtTLLslhDCr/PcdIYTPpVj2iD3HKhFCODCEUAohFGody56k5/nay7pUz7HhEkKYWb5W6oarzBDCZSGEu9OqT+rmC5r2SCGEFcA0YFqM8eUeyx8HjgUOijGuiDGeVWmZg9l2OIUQ6oFrgTfGGH9V63hGmhjjlZVsF0L4AXB3jLHfxDnGOCaNuEIIHwE+HmM8oUfZVT/HQghPAQeUH44COoDO8uMrgVXAV4BtQBF4FrgoxvifKcfxVpLjvX+a5WpkiDE+D6RyrVSzTKkS9gxrT/ZH4APdD0IIRwGjaxdO1UwBmoCneltpL1069pbjGGM8MsY4ppzU/wj4ZPfjHh8cflpeP54kMf5aCGFCjUJOXQghF0Lw/U1SRfaKF39l1l3AGcCN5ccfBu4Etn/lGEK4A3gxxnhRd08VcB1wPtAFXBhjvL2fbW8AzitvezbQDiwCJgFXdycXPfctP34rPXrFyj3ZS4APAQcD9wIXAncAJwA/B06LMW7s+QRDCIcBj5cfbgohPBJj/KsQQgn4JDCH5Do+KITwzvJzPxD4b+CsGOOvy+W8jiTpORS4HygBvy8/14+wUw9mufxDY4y/DyE0Ap8H3gc0AvcBn44xbqvgmI4qx3QqSeL1G+Cvga8D/xVjvLFHnb8GLo0x3sdOQggfKpczhqSXvOe6y4BDYowfDCE0AbcCbwfqgN8B7wQ+BZwIvDGEsAi4I8b4yT6O4/bnXq5iUgjhe8AbgceAM2KMz4UQDiT5QFYfY+wsx/KD8vH4MXAzUB9CaAE6Y4zjezlPziwft32A5eU2W9WjDc4GPgNMBv6VJLFN7WdDY4zFEMJtJOf5wcCjPdeXv67+AvAR4BXgmp3W/wPwL8D+wDrgCzHGpSGE1wAPAI3l5w9wWHm764EjSHqmvwH8c4yxfaBYy7F8keQ631KO5UbKx7987H8MvBWYDRwVQti3XN9hwDPA/44x/qRc3gqS8/775ceX8afz6ECStv1H4DIgB1wTY7y6vG2+/LzPJDmv/x9J220or+/zfO1DX+fYEqA1xviZHsfh28DDMcbrdjo+uXJd/4vkw/NzwAdijE+Wz7tWkjbeoY7yvoeXj+XrSdrx4hjj18rr+rqGp9Dj/A8hjCvX/7ck3zjcTnI9d4UQDiF5/TmW5JuK/xdj/J87H4Sdr6kQwkEkr5GzgZ8BsYJjKQ2an5y1J/sZMDaEcET5jfL9JIlIf/YDxgHTgY8BS/rpEduP5E1lOnAJcAvwQZI3jBOBi8sv1pU6heRN5DDgXSTJwoUkiU6eJGHbQYzxGeDI8sPxMca/6rH63cAbgD8rJ7u3kbx5TwSWAt8OITSGEBqAb5F8eNgH+I9yLJW6qhzzscAh/Ol4dOvvmF5Ncrz+olz3v5C8UX6V5FgCEEI4prz/d3auPITwZ8BNJB8kppWfX19fvX+4HMuM8nZnAdtijJ9lx17ST/bY592Uj2MfZf4v4AqSD0BPkCSl/YoxPl2u+6fl+sb38rz+ClhA8iFjKknycu9Om70TOB44urzdyQPVPRjl3vCPAy0kHxx2dmY5htcBx5EkRD2tLa8fC/wDcF0IYXaM8VWSDySrevRKryL5sPRpkmP5JuD/A/6pwnDPLJd5LEly9O5etvkQ8AmgmSRh/g5Joj+RJFH7ziDH3P8lyQfIk4Dze4z7Pbdc/1tIzsmNJB92B3u+duvrHPsq8IHuXu4QwiTgbcC/9VLGScCbSa7VcSTny/qB6ih/cPleucx9SV5Hv1R+HtD3NbyzO0iG4xxCcr6cRHJuUa73u8CE8rG4sZf9e/NvwC/LMV9Bcn1LqbNnWHu67t7hZcDTwMoBtu8ALi/35N1f7rUKJIl1b9t+vtyzcS/wZeD6GOMW4KkQwn8Dx5D0ZFTixhjjGoAQwo+AtTHGx8uP7yNJDAZjQY+eqE8AS2OMPy+v+2oI4UKSXqASUA8sKvcqfj2E8M+VVFDubfoEcHSPuq4keZOaV96s12MaQngE+CjJWOfudunulfs2sDSEcGiM8XckicO/99FDeCrwnzHGH5b3vZikN7c3HSTJxyHlXvFfVvA0tx/HPnynR92fBTaHEGZUUO5A/hdwW4zxsXLZ84CNIYQDY4wryttcFWPcRPKtwMMkieB/pVD3G0MIm0iSl98D74kxbu5lu/eRnDcvlGNcQNLzCkCMseeHl2UhhO+SfFB8rLdKY4w922NFCGEpSUK5qIKY30dy/b1YjuUqdr1m7ogxPlVefxLwuxjjXeV194QQPkXyQfSOCuoDmF9O7H8TQridZFjW90k+6HyyRyyXAc+Xe4QHc7526/UcizE+EkLYXH6e3yNJVH/Q/Tqykw6SDwGHA4+UP5ANWAdJkrui+9sc4PEQwjeA00IIV9D3Nby94BDCFJIe4fExxm3AqyGE60heO5aWYzuA5B6PF0m+BelXCGEmyQfBt8UY24AfhhD+70D7SUNhMqw93V3AD4GDSIZIDGR991faZVvp+4aN9THGrvLf28r/93wT2tbPvr3Zed/dKQvghR5/HwB8OIRwbo9lDSQ9UyVg5U5frz9XYR2TScZh/7LHm1+OZAhCt76O6SSSnvU/7FxojLE1hPDvwAdDCPNJkoydex27TaPHc40xvhpCWN/HtneR9ArfG0IYT/JNwWdjjB39PMcX+lm3w/oYY0sIYUM5pt4SksGYRo+ksVz2epIe8hXlxS/12L6/c3WwftZzWMwAMfY8PjucNyGEtwOXkvRG5knOld/0VVh52M+1JL3Mo0negyr5wNJbLL21W89l03aOt/x4eoX17Vzec8BR5b8PAO4LIfTsIe0iGTowmPN1l3p2Osde4E/fonyv/P/1vRUQY3wohLCYpIf6gBDCN4HzYoyvDFDHAcAbyh+OuhVIrqU+r+GdHEDygXt1j9eJfI86/4WkZ/eREMJGkiEntw1Q5jRgY/nDSLfnSK5vKVUmw9qjlcfV/ZGkV+JjNQzlVXa8eW+/YaizZ3L7Akkv9ud33iiE8BZgeggh1yMhnsmf3uB2iD2E0DP2l0kS9SN79AxV6mX+NE6xt1kwvkryhrsc2Bpj/Gkf5awmGWPaHd9okt7fXZST3vnA/PL4w/tJxhl+hR2PV08DjcHd/uYbQhhD8lXxKpLnBsmx6044eh67gcpdxZ9mfej+unoiA3+7MZxWs2PyMbP7j5CMJf8GyTcz/yfG2BFC+BbJhyXo/fnfRDIG/gMxxi0hhDn0/SGot1h6DjfoLSnqWecOx7dH/N0965VcszOA3/bYd1X57xeAj8YYf7zzDiGEis/Xnerp3r7nOQbJB7ony0OJjiAZ8tSrGOMNwA3lsdJfA+YC3VP59VXHC8CyGONf9/Jc8vR/DXd7AWgDJu30wbg7rpdIhrkQQjgB+H4I4Yc9xuX3ZjUwIYTwmh4J8UwGvq6kQTMZ1t7gY8CEcg9Mrc7pJ4DPhGS+0AaSG7KG0y0kPVXfBx4heZN/K0mv+U9Jvg7/VAjhSyRfE/858HB5318BR4YQjiV547+su9DyDVa3kIwF/WSMcW0IYTrw2hjjg/0F1OPmrGvLXx+vKdf7WIyxLcb403LP2jUkSXFfvg78vPwm+ghwOX3c7xBC+EuSJPy/SRLUDv40vnENMKu/mPvwtz3qvoKkV7V72MBKkt7tpSTjGQ/usd8aYP8QQkMfwz/uIfnq/t9IhvhcCfy8xxCJPoU/3Wh0UCXb74avkZw3/0mSPF7QY10DyQ2V64DOci/xScCT5fVrgIkhhHE9hmA0k7RLS0hu2jq7vD+w/QbEH8QYL+sjlv8dQvhOOZbzB4j9fuDGEMLp5X1PIRkX3j2F3BPA+0MID5AMdzqVXYegXBySmxwPIhkT3T3O/Wbg8yGED5c/kE8G/iLG+H8YxPnaQ5/nWIzxxRDCL0iukW+UhyHsIoRwfLmex0iOTys7ju3ttY5y215Vvka7x6wfC7TEGJ/u6xruWXeMcXV5iMw15WEhLeVjtn+McVkI4TSS8fMvkoyvLtH7uOOeZT4XQniU5IPtheV63wV8u7/9pKHwBjrt8WKMf4gxPjrwllV1F0lSuYLkRpF/H87Ky8//TGAxyZvN70lmAKCciL23/HgD8D+Bb/bY9xmSN+zvk9xEtfN4vvPL5f0shPBKebtAZc4j+dr8F+W6v8COrzt3knz13OeNj+UxoOeQjFNeXX5+L/ax+X4kycgrJAnmMv6UaF8PnBpC2BhCuKHC+CnXe2k5/tfT48Y/kmM+l+RGpSMpj6cse4hkOryXQggvs5OYzGJwMUnv6mqSRPr9FcY0g+Qr42r3It8CPEhybj/GjufNFpKbPr9G0ian0yNRiTH+liThfzaEsCmEMI3kfDid5Oa2W9j1OplBMiNEX7F8F/g1Se/y/SQf8rp62zjGuJ7k5r7PkLTPvwDvjH+al/xikmO+keTbhN5uSltGcu7/P5LZY75bXn59+bl+N4SwheSegzeU6x3M+dqtv3MMkm9RjqL/D41jSY7RRpJzYz2wcKA6yu14Esm5t4pkaM4XSD7owMDXcLczSD4g/Xc5hq+T3BgKydjfn4fkfoJvk8zq8Ww/z6Xb6STHdUM59kqGwkmDliuV/MZBypqw0xRfNYzjDOATFY5fVVkI4SJgXYxxaa1jSUsIYX/gazHGv6hw+7cDN8cYdx4KkUYsB7LTtHm1FEJ4M8kHxgPiEKbWGynXuzRSOUxCUk2Ux1L+E/ClWseyp4kx7nE/3zuQ8lfofSbCIZnv9i9JeoenkPQU7jIn9d4mJL9A+b+BW4eSCEsamMMkJA27EMLJJGNF19D719PSznIkwxk2kgyTeJod57ve64QQjgA2kQw3WFTTYKS9mMMkJEmSlFn2DEuSJCmzajlmuJHkDtPV9HE3sCRJkrSb6kiGG/2CZE7sHdQyGT4e+FEN65ckSVJ2nEgvPwdey2R4NcDGja9SLFZv3PLEiWNYv76lauVr+NiWew/bcu9hW+4dbMe9h225q3w+x4QJr4Fy7rmzWibDXQDFYqmqyXB3Hdo72JZ7D9ty72Fb7h1sx72HbdmnXoflegOdJEmSMstkWJIkSZllMixJkqTM8ueYJUlSZpRKJVpaNrNtWwvF4t43s+vatXmKxWKtw6iZQqGBCRMmU1dXeYprMixJkjJj48Z15HI59tlnCnV1BXK5XK1DSlWhkKezM5vJcKlU4tVXX2HjxnVMmjS14v0cJiFJkjKjvb2V8eMnUijU73WJcNblcjle85qxdHa2D2o/k2FJkpQhJXI505+91VA+4DhMQpIkZVpnEdo6OlMvt7G+QKGCvHvx4kUsW/YQq1ev4s4772XWrEN2WH/bbV/mttu+3Ou6tHXl22nrGlzPaiUa6xqoKzYMuF1fx2KgY7Q7TIYlSVKmtXV08oun16Re7vFHTKHQOHCqdeKJb+W0097POeecucu6GH/LU089yX77VT4Gdne0dbXz2KonUy939rTXMjo3cDLc17Ho7xjtroqS4RDCCqC1/A/g/BjjgyGENwJLgVHACuCDMca1qUcpSZK0lzrmmGN7Xd7e3s61136Byy77POee+4/DG1SN9HUs+lqehsH0DJ8aY9z+USGEkAfuBj4SY1weQrgIuAr4aMoxSpIkZc6tt97MSSe9nalTp9U6lL3a7owgfz3QGmNcXn58M/C+3Q9JkiQp25588tfE+DTvfe9ptQ5lrzeYZPhfQwi/DiF8KYQwHpgJPNe9Msb4MpAPIeyTcoySJEmZ8vjjj7FixR857bS/49RT38W6dWv5538+l0ce+VmtQ9vrVDpM4sQY4wshhEZgEbAYuC+NACZOHJNGMf2aPLm56nVoeNiWew/bcu8xHG3Zta2FYtvWIe2bbxxN3aihvdcMtd7dqbNWsnJNrl2bp7DTFA+5jhx1+fTnHM7lc7vUNZC6uiS+f/iHj/IP//Cnkafvfvc7uOaa6zn44IFnURhsnT3liznydelPPZevy1HID+1YVLp8e135/KDO54qS4RjjC+X/20IIXwK+DVwPHNC9TQhhElCMMW6ouHZg/foWisXSYHYZlMmTm1m3bssOy5qbm9iypbWPPdJVrbqamuppbe0YcNlIN5iYe2vLrKi0vYfzHOirrkpiGMltuSdeR8Ohr+MyXG3Z0LGZlt8/PqR9xxzyOtpbhvY+M9R6d6fOWhjJ12TaisXiLr/QViqW6KpCLlIqlir6NbhFixaybNnDbNiwnnPPPZuxY8dx991f22W7rq5dY9/Z7v4CXbFUotiV/i/YFbtKdFbwM9F9HYtKjxEkbdzzfM7nc/12vuZKpf4bP4TwGqAQY9wcQsgBnwP+DDgF+B3w4R430B0cY/yHAZ9p4kDgjybDQ1PrRCgtJsOVMRkePnvidTQc9vhkuH7csNa7O3XWwki+JtP20kvPsd9+B+ywrNbzDKdpd5PhWs8znIad27hHMnwQyexnO6ikZ3gK8I0QQh1QB/w38E8xxmII4UPA0hBCU7nwD+7uE5AkSRpOhTwVzQecBXXFhormAx609DubUzNgy8cYnwVe18e6nwBHpR2UJEmSNBz8cW5JkiRllt8JSNIACl1tlFqTsf+5piY66xprHJEkKS32DEvSAEqtrax/9HHWP/r49qRYkrR3MBmWJElSZpkMS5IkKbMcMyxJkjKtgTboqMIQqPom2un/HoPNmzdxxRWXsHLli9TX17P//jOZO/dCxo0bx9lnf4zW8tCsiRMnMXfuPKZOnZZ+nD30vEciTZXeb7F48SKWLXuI1atXceed9zJrVvKLe/PmfYZVq1aRz+cYNWo0n/70XA49NKQSm8mwJEnKto7WIf+oS3/GHPI6qO8/Aczlcpx++hnMnn0cAEuWXM/NN9/IvHmXcM01NzJmTPLLaV/72j3ceON1XHnlwtTj7Kn7Hom0TTzudfCagZPhE098K6ed9n7OOefMHZZ/9rPztx+LH/3oByxYcDm33favqcTmMAlJkqQaGTt23PZEGODII1/LSy+9BLA9+QPYuvVV8vncsMc33I455limTNlvl+U9j0VLSwu5XHoprD3DkiRJI0CxWOS++77BCSe8efuy8877FM88Exk3bhzXXbekhtHV3lVXXcEjj/wMgKuvviG1cu0ZliRJGgGuu24ho0eP4pRT3rd92dVX38C3vvUAb3vbydxxx1dqGF3tXXDBxXzzm9/hE5/4J770petTK9dkWJIkqcYWL17Eiy8+z/z5C8jnd0zP8vk873zn3/Pgg/fXKLqR5W/+5h089tgv2bx5UyrlmQxLkiTV0NKlS4jxaRYsuIaGhgYANm7cyKZNm7Zv8/DD3+fggw+pUYS1tXXrVtaseWn74+XLf8jYsWMZO3ZcKuU7ZliSJKlGnn32D9x11+3MmDGTs876KABTp07j4x8/i89//jK6ujoplUpMnTqNiy++vMbRVt+iRQtZtuxhNmxYz5w55zB27DhuuOEmLr74Alpbt5HP1zF27Fi+8IXryOXSuaHQZFiSJGVbfVMyDVoVyh3IrFkHs3z5o72uu+22u9OOaEC5pqZkGrQqlFuJOXPmMmfO3F2Wf/nLd6Qc0Z+YDEuSpExrp3HA+YCzorOusaL5gPcmjhmWJElSZpkMS5IkKbNMhiVJkpRZJsOSJEnKLJNhSZIkZZazSUiSpEzryrfT1tWeermNdQ3UFRsG3G7x4kUsW/YQq1ev4s4772XWrEPYvHkTV1xxCStXvkh9fT377z+TuXMvZMKECanHuYMidHR0pV5sfX1dRV2wvR0LgLa2Nm688VoeffQRGhoaOPLIozn//M+mEpvJsCRJyrS2rnYeW/Vk6uXOnvZaRucGToZPPPGtnHba+znnnDO3L8vlcpx++hnMnn0cAEuWXM/NN9/IvHmXpB5nTx0dXfzu6TWpl3voEVOob6wbcLvejgXATTfdQENDA/fc801yuRwbNqxPLTaTYUmSpBo65phjd1k2duy47YkwwJFHvpb77vvGMEZVG70di61bt/Jf//UdvvnN+7f/6tw++0xMrU6TYUmSpBGsWCxy333f4IQT3lzrUGpi5coXGTt2HLfffguPPfYoo0aN4swz/6nXxHkovIFOkiRpBLvuuoWMHj2KU055X61DqYlisciqVSs59NDAV75yF2ef/Sk++9m5vPpqSyrlmwxLkiSNUIsXL+LFF59n/vwF5PPZTNumTNmPuro6/vqvTwaSISPjx4/nhReeT6X8bB5VSZKkEW7p0iXE+DQLFlxDQ8PAN+LtrcaPH8/s2cfxi1/8HIDnn3+OjRs3MH36jFTKd8ywJElSDS1atJBlyx5mw4b1zJlzDmPHjuPyyxdw1123M2PGTM4666MATJ06jQULrq5xtNXV27G4++6vcd5581iw4HIWL76OQqHARRddTnNzcyp1mgxLkqRMa6xrYPa011alXIoDbzdnzlzmzJm7y/Llyx9NPaaB1NfXcegRU6pSbiX6OhbTp+/P4sVfTjsswGRYkiRlXF2xoaL5gAetgkR4xMlT0XzAexPHDEuSJCmzTIYlSZKUWSbD2q7Q1Ubdq5spdLXVOhRJkqRhYTKs7Uqtrax/9HFKra21DkWSJO2Fun9OeSQxGZYkSVJmmQxLkiQps5xaTZIkZVqhq60qQwRzTU101jUOuN3ixYtYtuwhVq9exZ133susWYewevUq5s07b/s2LS1bePXVV3nggYdSj7OnXKmdzo707x0q1DdSqmD6ut6OBcBPfrKcW2+9ic7OTsaOHceFF17KtGnT04ktlVIkSZL2UN33zKRt4nGvg9cMnAyfeOJbOe2093POOWduXzZ16jTuuOPftj++/vpr6OrqTD3GnXV2tLHit79OvdwDDz+augp+Urq3Y/HKK6/w+c9fyk033cbMmQfw4IP3c/XVV3HttTemEpvDJAZQKHiIJElS9RxzzLFMmbJfn+s7Ojr43vce4B3v+PthjKo2ejsWK1e+wIQJE5k58wAA3vSm/8Ejj/yUTZs2pVKnmd4ACoVs/QqLJEkaWZYvX8akSfsSwuG1DqUmZsw4gA0b1vP0008B8N3vPgDAmjUvpVK+wyQkSZJGsO9859u84x1/V+swambMmDHMn38lN9xwLe3t7bzxjX/BmDHN1NWl02FpMixJkjRCrVu3lieeeIyLL7681qHU1PHHv4Hjj38DABs2rOeee+5i+vT9UynbYRKSJEkj1AMP/CdvetMJjBs3vtah1NT69S8DUCwWWbp0CX//96cwatSoVMq2Z1iSJKmGFi1ayLJlD7Nhw3rmzDmHsWPHcffdXwPg/vv/kzlzzhughL1HX8filltu4je/+RUdHR38+Z+/kbPO+mRqdZoMS5KkTMs1NSXToFWh3ErMmTOXOXPm9rru3nu/mWZIAyrUN3Lg4UdXpdxSBdv1dSwuuODi1GPqZjIsSZIyrbOusaL5gLOglGuoaD7gQZebeonpccywJEmSMstkWJIkSZllMixJkqTMMhmWJElSZpkMS5IkKbOcTUKSJGVbETo6ulIvtr6+rqJux8WLF7Fs2UOsXr2KO++8l1mzDgHg+eef4/Ofv4zNmzczbtw4LrpoPjNmzEw9zp4ayFHqLKZebq6Qp72COSXmzfsMq1atIp/PMWrUaD796bkcemhIPZ6eTIYlSVKmdXR08bun16Re7qFHTKG+sW7A7U488a2cdtr7OeecM3dYfvXVC3jve0/j5JP/lgcfvJ+FC6/khhtuTj3OnkqdRVqe3ZB6uWNm7QOF3IDbffaz8xkzZgwAP/rRD1iw4HJuu+1fU4+np0ENkwghXBpCKIUQXlt+/MYQwq9CCM+EEL4bQti3OmFKkiTtnY455limTNlvh2UbN27gmWd+y9vedjIAb3vbyTzzzG/ZuHFjLUIcNt2JMEBLSwu5XPVH9FbcMxxCmA28EXiu/DgP3A18JMa4PIRwEXAV8NFqBCpJkpQVa9asYdKkfamrS3qW6+rqmDRpMmvXrmHChAk1jq66rrrqCh555GcAXH31DVWvr6J0O4TQCCwBzu6x+PVAa4xxefnxzcD70g1PkiRJWXLBBRfzzW9+h0984p/40peur3p9lfY9Xw7cHWNc0WPZTMq9xAAxxpeBfAhhn/TCkyRJyp4pU6bw8str6epKbuzr6uri5ZfXse++U2oc2fD5m795B4899ks2b95U1XoGHCYRQngTcBxwQTUCmDhxzMAb7abJk5t3WdbUVF/x/s3NTbtV/2DqGoze4tqdWFtL22hvbmT06Aaaejlm1TKYmHtry6yotL1393wdjL7qqiSGkdyWO8fffW0Aw359jCR9tetwtGXHpm3kxjQOad9RoxsYN35oMQ613t2ps1ZG8jWZprVr8xQKO/YFdnUUyefTH5uaz+d2qWsgdXVJfJMnT+LQQwMPPfRd3v72d/C97z3AYYcdzuTJEwcsY7B17lB/sUhdfuAb3QZdbj5HaXtcvZe/detWtmx5Zfv46R/9aBnjxo1ln30mkMtVHlM+nx/U+VzJmOG3AEcAfwwhAOwPPAjcABzQvVEIYRJQjDEO6hbE9etbKBYHnmpjqCZPbmbdui07LGtubmLLltaK9m9qqqe1tWPI9Q+mrsHoLa7djbVuaztbtrTRsLWdLTsds2oZTMy9tWVWVNreu3sO7G5MlcYwktuyt/i7rw1gWK+PkaSvdh2utmzoaKelpW1I+5a2ttPeMbQYh1rv7tRZCyP5mkxbsVikc6epw4rFEsVi+tOJFYulXerqzaJFC1m27GE2bFjPueeezdix47j77q9x3nnz+NznLuUrX7mF5uZmLr54/oDlFQr5iursS65YoqsKeVlX+VjkcjlKpd7Lb2l5lXnz/oXW1m3k83WMHTuWq666jq6uElQwLVu3YrG4w/mcz+f67XwdMBmOMV5FcmMcACGEFcA7gf8GPhFCOKE8bvgs4D8qjlSSJGkEqK+v49Aj0h9+UF8/8LRqAHPmzGXOnLm7LD/ggAO55Zavph1Wv3KFfDINWhXKHSih3WefiXz5y3ekXvdAhjzPcIyxGEL4ELA0hNAErAA+mFZgkiRJwyJPRfMBZ0E7pYrmAx686o0C2F2DToZjjAf2+PsnwFFpBiRJkiQNl+rPZCxJkiSNUCbDkiRJyiyTYUmSJGWWybAkSZIyy2RYkiRJmTXkqdUkSZL2BrlSO50dQ/tRl/4U6hsp5RoG3O7HP/4Rt956E6USlEolPvrRM3nLW/4q9Xgq00VnZ/o/3lQo1AP9T1+3efMmrrjiElaufJH6+nr2338mc+deyIQJE1KPZ4fYqlq6JEnSCNfZ0caK3/469XIPPPxo6hr6T4ZLpRJXXHEJX/rSLcyadQi///3vOPvsj3HiiW+tyk9ED6Szs4Nnn/1j6uXOmnUQhUL/yXAul+P0089g9uzjAFiy5HpuvvlG5s27JPV4enKYhDKpUOikkH+VQqGz1qFIkjIun8/T0tICQEvLFiZOnFSTRLjWxo4dtz0RBjjyyNfy0ksvVb1ee4aVTcU2Nq39LeP3PRwvA0lSreRyOS6/fAHz5n2GpqZRbN26lYULr691WDVXLBa5775vcMIJb656XWYBkiRJNdLZ2cldd93BggXXcPTRx/LrXz/BJZdcwN13/wejR4+udXg1c911Cxk9ehSnnPK+qteVvT54SZKkEeL3v3+G9evXcfTRxwJw9NHHMmrUKJ57Lv1xu3uKxYsX8eKLzzN//oJhGS5iMixJklQjkyfvy9q1a3n++RUArFjxRzZs2MD06fvXNrAaWbp0CTE+zYIF19AwwM2HaXGYhCRJUo1MnDiJ8867gIsuOp9cLumjnDfvEsaOHVfjyIbfs8/+gbvuup0ZM2Zy1lkfBWDq1GksWHB1Ves1GU5RoZCns7NY6zAkSdIgFOobOfDwo6tSbqmC7U466e2cdNLbU69/KAqFembNOqgq5Q5k1qyDWb780dTrHojJcIoKhTqTYUmS9jClXMOA8wEPqdzUSxwOdQPOB7y3ccywJEmSMstkWJIkSZllMixJkqTMMhmWJElSZpkMS5IkKbOcTUIaQGcR2jo6axpDrpDn1bZOGusLFPwIK0mpaiBHqQqzQeUKedormFPi+eef4/Ofv4zNmzczbtw4LrpoPjNmzEw9nkoUCp1QbEu/4HwjnZ2Vp5233fZlbrvty9x5573MmnVI+vH0YDIsDaCto5NfPL2mpjEcNH0cf1y5meOPmEKh0ctWktJU6izS8uyG1MsdM2sfKOQG3O7qqxfw3veexskn/y0PPng/CxdeyQ033Jx6PBUptrFp7W9TL3b8vodTadoZ42956qkn2W+/qanH0Rv7mCRJkmpk48YNPPPMb3nb204G4G1vO5lnnvktGzdurHFktdHe3s61136B8867YNjqNBmWJEmqkTVr1jBp0r7U1SU/dFFXV8ekSZNZu7a230jWyq233sxJJ72dqVOnDVudJsOSJEmquSef/DUxPs1733vasNZrMixJklQjU6ZM4eWX19LV1QVAV1cXL7+8jn33nVLjyIbf448/xooVf+S00/6OU099F+vWreWf//lcHnnkZ1Wt1ztxJEmSamTChH045JDD+P73H+Tkk/+W73//QQ49NDBhwoRahzbsPvShj/ChD31k++NTT30XX/zidc4mIUmStDebO/dCPve5S7n99ltpbm7m4ovn1zqkTDEZliRJmZYr5JNp0KpQLhXMM3zAAQdyyy1fTb3+Ick3lqdBS79cBjmV89e//n/Tj6MXJsOSJCnT2ilVNB/w4A2cCI80yQ9jVCE9TP83TVLjDXSSJEnKLJNhSZIkZZbJsCRJkjLLZFiSJEmZZTIsSZKkzDIZliRJUmY5tZokScq4Ljo7O1IvtVCoB+oG3G7x4kUsW/YQq1ev4s47793+i2s//vGPuPXWmyiVoFQq8dGPnslb3vJXqcfZU7EuR3sx/SnhGvI58l39l7t58yauuOISVq58kfr6evbffyZz517Ili2vsHDhlaxf/zJ1dXUcccSRfOYz59PY2JRKbCbDkiQp0zo7O3j22T+mXu6sWQdRKAycDJ944ls57bT3c845Z25fViqVuOKKS/jSl25h1qxD+P3vf8fZZ3+ME098K/l89b7Yby+W+PWazamXe/SUcQyUuuZyOU4//Qxmzz4OgCVLrufmm2/kIx/5OOee+2kOO+xwisUil132We65524+8pGPpxKbwyQkSZJq6JhjjmXKlP12WZ7P52lpaQGgpWULEydOqmoiXGtjx47bnggDHHnka3nppZeYOnUahx2W/CpePp/niCOO5KWXVqdWrz3DkiRJI0wul+Pyyxcwb95naGoaxdatW1m48PpahzVsisUi9933DU444c07LG9ra+U73/k2Z511Tmp1mQxLkiSNMJ2dndx11x0sWHANRx99LL/+9RNccskF3H33fzB69Ohah1d11123kNGjR3HKKe/bvqyzs5NLL72Q17/+OE444S2p1bX39rVLkiTtoX7/+2dYv34dRx99LABHH30so0aN4rnn0h/bPNIsXryIF198nvnzF2wfFtLV1cXll19Mc/NY5syZm2p9JsOSJEkjzOTJ+7J27Vqef34FACtW/JENGzYwffr+tQ2sypYuXUKMT7NgwTU0NDQAyZCJK6+8jHw+zwUXXEwul0u1TodJSJIk1dCiRQtZtuxhNmxYz5w55zB27DjuvvtrnHfeBVx00fnkcknf5bx5lzB27LgaR1s9zz77B+6663ZmzJjJWWd9FICpU6fxrne9mwcffIBZsw7mYx/7EABHHXUMn/nM+anUazIsSZIyrVCoZ9asg6pSbiXmzJnb61f/J530dk466e1ph9WvhnyOo6ekn3A35HMwwDzDs2YdzPLlj/a6rq/laTAZliRJGVdX0XzAWZDvKg04H/CQDJAI15JjhiVJkpRZJsOSJEnKLJNhSZIkZZbJsCRJkjLLZFiSJEmZ5WwSkiQp0wqFTii2pV9wvpHOzoFTrcWLF7Fs2UOsXr2KO++8l1mzDgHg1FPfRUNDAw0NjQCcffa5vOENb0o/zh46i9DW0Zl6uY31BQoVdMH+5CfLufXWm+js7GTs2HFceOGlTJs2PfV4ejIZliRJ2VZsY9Pa36Ze7Ph9D6eSVOvEE9/Kaae9n3POOXOXdZ/73Be2J8fDoa2jk188vSb1co8/YgqFxv6PxSuvvMLnP38pN910GzNnHsCDD97P1VdfxbXX3ph6PD1VlAyHEL4FHAQUgRbg3BjjEyGEw4CvAhOB9cAZMcbfVSlWSZKkvc4xxxxb6xBGhJUrX2DChInMnHkAAG960//giisuYdOmTYwfP75q9VY6ZvjDMcZjYoyvA64GbisvvxlYEmM8DFgCLK1CjJIkSZk0f/7FfPjD7+fqq69iy5YttQ6nqmbMOIANG9bz9NNPAfDd7z4AwJo1L1W13oqS4Rjj5h4PxwHFEMK+wGzgnvLye4DZIYTJ6YYoSZKUPUuW3MJXv3oPt9xyJ1Diuuu+WOuQqmrMmDHMn38lN9xwLR/72IfYuHEjY8Y0U1dX3V8HrHjMcAjhVuAkIAf8DTADWBlj7AKIMXaFEFaVl6+rQqySJEmZMWXKfgA0NDTwnvecxgUX/HONI6q+449/A8cf/wYANmxYzz333MX06ftXtc6Kk+EY48cBQggfAhYCF6cRwMSJY9Iopl+TJzfvsqypqb7i/ZubK/+V7t62HUxdg9FbXYOJdWetpW20NzcyenQDTb0cs2oZTMy9teVQtG3rpLO5idGjG2kc1X+ZpQ1baR5TlV9qr1hTYz3NY5J4J+8zevvytM+BweqrrkpiSKstq2Hn+LuvDWDYr4+RpK92HY627Ni0jdyYxiHtO2p0A+PGDy3Goda7O3XWyki+JtO0dm2ewk7TGuTJkc/nUq8rn89RyA9uFtu6uiS+bdu20dXVyZgxzZRKJR566LscdljYJfbeVLJNX3IdOeqqcCxy+VyPuPouf/36l5k4cRLFYpFbbvkS73nPKTQ3v2ZQdeXz+UGdz4OeTSLGeFcI4cvAi8D0EEJduVe4DpgGvDCY8tavb6FYLA02jIpNntzMunU7jrFpbm5iy5bWivZvaqqntbVjyNsOpq7B6K2uwcTam7qt7WzZ0kbD1na2rBuecUmDibm3thyqQr6Nli2tFEa18UpL/2VubetkS0v6bTgYreMa2dLSytatbazr6gKqcw4MRl91VRJDmm2Ztt7i7742gGG9PkaSvtp1uNqyoaOdlpahTX1V2tpOe8fQYhxqvbtTZy2M5GsybcVikc7O4g7LCvlSVXKRYrFEZ7E44HaLFi1k2bKH2bBhPeeeezZjx47jC1+4losu+heKxSJdXUUOPPAgPv3p83eJfWeFQn7AbfpTKpboqsKxKBVLdHYWyeVylEp9l3/TTUv4zW9+RUdHB3/+52/kE5/45KCfT7FY3OF8zudz/Xa+DpgMhxDGABNijC+UH78L2ACsBZ4APgDcXf7/8RijQyQkSdKeI99YngYt/XKpII+bM2cuc+bM3WX57bf/W/oxDaCxvsDxR0ypSrmVuOCCVAYeDEolkb0G+I8QwmuALpJE+F0xxlII4SzgqyGES4CNwBnVC1WSJCl9yQ9jVOGnF4beQVszhTwDzge8txnw2cYY1wBv7GPdb4E3pB2UJEmSNByGPsJakiRJ2sOZDEuSJCmzTIYlSZKUWSbDkiRJyiyTYUmSJGVWtubOkCRJ2kmxLkd7FX5ooiGfI981cLmLFy9i2bKHWL16FXfeeS+zZh2SeiyVaqANOqrwQ1P1TbTT/685bt68iSuuuISVK1+kvr6e/fefydy5FzJhwgTmz7+Ixx57lPXrX+a73/0ho0eP7reswTAZliRJmdZeLPHrNZtTL/foKeMY+Mfp4cQT38ppp72fc845M/UYBq2jlZbfP556sWMOeR3U958M53I5Tj/9DGbPPg6AJUuu5+abb2TevEt45zv/nk996p9517tOSj02h0lIkiTV0DHHHMuUKfvVOoyaGzt23PZEGODII1/LSy+9BMDrX388EybsU5V6TYYlSZI0ohSLRe677xuccMKbq16XybAkSZJGlOuuW8jo0aM45ZT3Vb0uxwxLkiRpxFi8eBEvvvg8X/jCdeTz1e+3NRmWJEnSiLB06RJifJqFC6+noaFhWOo0GZYkSaqhRYsWsmzZw2zYsJ45c85h7Nhx3H3312od1rB79tk/cNddtzNjxkzOOuujAEydOo0FC67mwgvn8vTTTwFw+umnMGvWwVx77eJU6jUZliRJmdaQz3H0lHFVKZcK5hmeM2cuc+bMTb3+IalvSqZBq0K5A5k162CWL3+013VXXrkw7Yi2MxmWJEmZlu8qVTQf8KBVkAiPNO00Djgf8N7G2SQkSZKUWSbDkiRJyiyTYUmSJGWWybAkSZIyy2RYkiRJmeVsEpIkKdM6i9DW0Zl6uY31BQoVdDu2tbVx443X8uijj9DQ0MCRRx7N+ed/NvV4KtGVb6etqz31chvrGqgr9v8jGps3b+KKKy5h5coXqa+vZ//9ZzJ37oVMmDCBJ5/8DQsXXklbWxtTp07lkkuuYMKEfVKJzWRYkiRlWltHJ794ek3q5R5/xBQKjQOnWjfddAMNDQ3cc883yeVybNiwPvVYKtXW1c5jq55MvdzZ017L6Fz/yXAul+P0089g9uzjAFiy5HpuvvlGzj//Iq644mIuvPAyjjnmWO6441ZuuulGLrzw0lRic5iEJElSjWzdupX/+q/v8PGPn00ulwNgn30m1jiq2hg7dtz2RBjgyCNfy0svvUSMT9PQ0MAxxxwLwLvffSoPP/z91Oq1Z1iSJKlGVq58kbFjx3H77bfw2GOPMmrUKM4885+2J35ZVSwWue++b3DCCW9mzZqX2G+/qdvXjR8/nmKxyCuvbGbs2N3/5UB7hiVJkmqkWCyyatVKDj008JWv3MXZZ3+Kz352Lq++2lLr0GrquusWMnr0KE455X1Vr8tkWJIkqUamTNmPuro6/vqvTwaSoQHjx4/nhReer3FktbN48SJefPF55s9fQD6fZ8qU/XjppdXb12/atIl8Pp9KrzCYDEuSJNXM+PHjmT37OH7xi58D8Pzzz7Fx4wamT59R48hqY+nSJcT4NAsWXENDQ3LDXQhH0NbWxq9+9QQA3/rW1/nLv3xbanU6ZliSJKmGzjtvHgsWXM7ixddRKBS46KLLaW5urnVYw+7ZZ//AXXfdzowZMznrrI8CMHXqNBYsuJqLL76chQuvpL29nf32S6ZWS4vJsCRJyrTG+gLHHzGlKuVWYvr0/Vm8+Mup1z8UjXUNzJ722qqUS7H/bWbNOpjlyx/tdd1RRx3DnXf+e+pxgcmwJEnKuEKeiuYDzoK6YsOA8wEPyQCJcC05ZliSJEmZZTIsSZKkzDIZliRJUmaZDEuSJCmzTIYlSZKUWSbDkiRJyiznEZEkSZnWQBt0tKZfcH0T7TT2u8nq1auYN++87Y9bWrbw6quv8sADD6UfTwUKXW2UWtM/FrmmJjrr+j8WAKee+i4aGhpoaEi2Pfvsc3nDG96Uejw9mQxLkqRs62il5fePp17smENeB/X9J4BTp07jjjv+bfvj66+/hq6uztRjqVSptZX1j6Z/LCYe9zp4zcDJMMDnPvcFZs06JPUY+mIyPMJ1FqGtY9eLorWrRFdnF431BQp7+GCXrnw7bV3tA2637tV2tpYG3q4So/K5VMqRJCktHR0dfO97D3DNNYtrHUqmmAyPcG0dnfzi6TW7LK8v1NHR2cXxR0zZ4381p62rncdWPTngds3NTWzZks5XN8ftf1gq5UiSlJbly5cxadK+hHB4rUOpqfnzLwZKHHXUsfzjP55Dc3NzVevbw/sUJUmS9g7f+c63ecc7/q7WYdTUkiW38NWv3sMtt9wJlLjuui9WvU6TYUmSpBpbt24tTzzxGCed9De1DqWmpkzZD4CGhgbe857T+M1vflX1Ok2GJUmSauyBB/6TN73pBMaNG1/rUGpm27ZttLS0AFAqlfj+9x/kkEOqP6xxzx5sKkmStBe4//7/ZM6c8wbecC+2YcN6LrroXygWi3R1FTnwwIP4zGcuqHq9JsOSJCnb6puSadCqUG6l7r33m+nXPwS5pqZkGrQqlDuQ6dP35/bb/23A7dJmMixJkjKtncYB5wPOis66xornA95bOGZYkiRJmWUyLEmSpMwyGZYkSRmSo1Qq1joIVUmpVBr0PibDkiQpMxoamti06WU6OzuGlDhp5CqVSrz66isUCg2D2s8b6CRJUmZMmDCZlpbNbNiwhmKxq9bhpC6fz1MsjuSe7xxQvQ8hhUIDEyZMHtw+VYpFkiRpxMnlcjQ3j6e5eXytQ6mKyZObWbduS63D6FNTUz2trR21DmMHDpOQJElSZg3YMxxCmAjcBRwMtAO/A/4xxrguhPBGYCkwClgBfDDGuLZ64UqSJEnpqaRnuAR8McYYYoxHAX8Argoh5IG7gXNijIcBPwSuql6okiRJUroGTIZjjBtijD/osehnwAHA64HWGOPy8vKbgfelHqEkSZJUJYMaM1zuDT4b+DYwE3iue12M8WUgH0LYJ9UIJUmSpCoZ7GwSNwItwGLgPWkEMHHimDSK6dfkyc27LGtqqq94/+bmpt3adjB17ay0YSvNY3qvv4l6Ro9uZPI+o/utv1KtpW20NzcyenQDTb0cs2ppzTdUHPfuPL+eCoUCTc1NjB7dSOOo/p9rf20wXJoa62ke01RRe6d1jCrRV12VxNDbdTlS7Bx/97UBDPv1MZL01a7D0ZYdm7aRG9M4pH1HjW5g3PihxTjUenenzloZydekBmekt+Vwvk9VouJkOIRwNXAo8K4YYzGE8DzJcInu9ZOAYoxxw2ACWL++hWKxevPN9TbFSHNzE1u2tFa0/2CmAOlt28HU1ZutbZ1sadl1//pCHR2dXWzd2sa6rq5Bx9qbuq3tbNnSRsPWdrYM07QsTU31bN3WXtEx2t1j2VPnuE5at7RSGNXGKy39P9e+2mA4tY5rZEtL64DtPZxT1vRVVyUxjOSpf3qLv/vaAIb1+hhJ+mrX4WrLho52WlrahrRvaWs77R1Di3Go9e5OnbUwkq9JDc5Ib8taTK2Wz+f67XytaJhECOFKkjHC744xdr8q/BIYFUI4ofz4LOA/diNWSZIkaVhVMrXakcA84BngJyEEgD/GGN8TQvgQsDSE0ER5arUqxipJkiSlasBkOMb4FMlv5/W27ifAUWkHJUmSJA0Hf4FOkiRJmWUyrH4Vutqoe3Uzha6h3bgiSZI0kpkMq1+l1lbWP/o4pdbazqYgSZJUDSbDkiRJyiyTYUmSJGWWybAkSZIyy2RYkiRJmWUyLEmSpMwyGZYkSVJmmQxLkiQps0yGJUmSlFkmw5IkScosk2FJkiRllsmwJEmSMqtQ6wA0cnQ05igeOJmWhk5KpRYAcg2duyxLU1tnnmK+K/VyJUmSKmEyrO3aSh08+uwvGVOcQbFhFAD59m20rHhhh2Vpqq+v4/DJB6deriRJUiUcJiFJkqTMMhmWJElSZpkMS5IkKbNMhiVJkpRZJsOSJEnKLJNhSZIkZZbJsCRJkjLLZFiSJEmZZTIsSZKkzDIZliRJUmaZDEuSJCmzTIYlSZKUWSbDkiRJyiyTYUmSJGWWybAkSZIyy2RYkiRJmVWodQCSKpfL53i1rTP5u5Df/vf29b0sq5b6xvphqUeSpGoyGZb2IG0dXfzqmXUAHDR9HH9cuXmH9b0tq5a/PG7GsNQjSVI1OUxCkiRJmWUyLEmSpMwyGZYkSVJmmQxLkiQps0yGJUmSlFkmw5IkScosk2FJkiRllsmwJEmSMstkWJIkSZllMixJkqTMMhmWJElSZhVqHYA0khUKnYwqddU6DEmSVCUmw1J/im3kSsVaRyFJkqrEYRKSJEnKLJNhSZIkZZbJsCRJkjLLZFiSJEmZ5Q10e7hcPserbZ0AtHaV6OrcceaDxvoCBT/ySJIk9cpkeA/X1tHFr55ZB0B9oY6OnZLh44+YQqHRZpYkSerNgFlSCOFq4BTgQOCoGOOT5eWHAV8FJgLrgTNijL+rXqiSJElSuir5Av1bwJuB53ZafjOwJMZ4GLAEWJpuaJIkSVJ1DZgMxxiXxxhf6LkshLAvMBu4p7zoHmB2CGFy+iFKkiRJ1THUW6tmACtjjF0A5f9XlZdLkiRJe4Sa31k1ceKYqtcxeXLzLsuamuor3r+5uWm3th1MXTsrbdhK85je62+invr6wg7rm9ixrtGjG5m8z+iK6lq9dhNNTQUaGgrUl59Hx5aOXZalrb6+ruJjPJi26E+hUKCpuYnRoxtpHLXr+dGtbVsnW7d19NkGw6WpsZ7mMU07tHf3st62Gw4NDQXGTmjsdV0l7dTbdTlS7Bx/a2kb7c3Jcx09uoGmERx7NfXVrsPRlh2btpEb0/v5NpBRoxsYN35oMQ613t2ps1ZG8jWpwRnpbZnWe3lahpoMvwBMDyHUxRi7Qgh1wLTy8kFZv76FYrE0xDAGNnlyM+vWbdlhWXNzE1u2tFa0f1NTPa2tHUPedjB19WZrWydbWnbdv3vmiI6OP63vbTaJrVvbWNfVtcv+veno7KK1tZNCeyet5Zjz7Z27LEtTfX0dHR1dFR2j3T2WPXWOS55PYVQbr7Rs6XO7Qr6Njs5ir20wnFrHNbKlpXWH9u5e1tt2w6G9vZN1W9t3WV7JNdPbdTlS9BZ/3dZ2tmxpA6BhaztbRmjs1dRXuw5XWzZ0tNPS0jakfUtb22nvGFqMQ613d+qshZF8TWpwRnpbDiavSks+n+u383VIwyRijGuBJ4APlBd9AHg8xrhuKOVJkiRJtTBgMhxCuCGE8CKwP/D9EMJT5VVnAeeGEJ4Bzi0/liRJkvYYAw6TiDF+CvhUL8t/C7yhGkFJkiRJw8Ef6pUkSVJmmQxLkiQps0yGJUmSlFkmw5IkScosk2FJkiRllsmwJEmSMstkWJIkSZllMixJkqTMMhmWJElSZpkMS5IkKbNMhiVJkpRZJsOSJEnKLJNhSZIkZZbJsCRJkjLLZFiSJEmZZTIsSZKkzDIZliRJUmaZDEuSJCmzTIYlSZKUWSbDkiRJyiyTYUmSJGWWybAkSZIyy2RYkiRJmWUyLEmSpMwyGZYkSVJmmQxLkiQps0yGVZE8kG/fRr7YWetQJEmSUmMyrIoUuzppWfECdHbUOhRJkqTUmAxLkiQps0yGJUmSlFkmw5IkScosk2FJkiRllsmwJEmSMstkWJIkSZllMixJkqTMMhmWJElSZpkMS5IkKbNMhiVJkpRZJsOSJEnKLJNhSZIkZZbJsCRJkjLLZFiSJEmZZTIsSZKkzDIZliRJUmaZDEuSJCmzTIYlSZKUWSbDkiRJyiyTYUmSJGWWybAkSZIyy2RYkiRJmWUyLEmSpMwq1DoASdpbFbraKLW2ApBraqKzrrHGEUmSdmbPsCRVSam1lfWPPs76Rx/fnhRLkkaW3e4ZDiEcBnwVmAisB86IMf5ud8uVJEmSqi2NnuGbgSUxxsOAJcDSFMqUJEmSqm63kuEQwr7AbOCe8qJ7gNkhhMm7G5gkSZJUbbs7TGIGsDLG2AUQY+wKIawqL183wL51APl8bjdDGNjOdeRyldeby+V2a9vB1NWbQl2e0U31uyyvL+Tp6MzvsL572c77V1p/XV2B14xuZlTDKEoNTUn8QGl0M6MaRyf/91iXhkKhjkK+jtEVlNlUaKSrIZ166/J1UN9EPl9Hnr6PTz5fRz6f67UNhlNDfR2jm+p3aO/uZb1tNxzy+RylXs6tSq+Z4bj2h6K3+POFOgqjR23/u7fn3Zuh7jcS9deuw9GWubo66hpHDXnfocY41Hp3p85a2dPiVd9GclsOJq9KS4/66npbnyuVSkMuPITweuDOGOORPZb9N/DBGONjA+x+AvCjIVcuSZIkVe5EYPnOC3e3Z/gFYHoIoa7cK1wHTCsvH8gvykGtBrp2Mw5JkiSpN3XAVJLccxe7lQzHGNeGEJ4APgDcXf7/8RjjQEMkANroJTuXJEmSUvaHvlbs1jAJgBDC4SRTq00ANpJMrRZ3q1BJkiRpGOx2MixJkiTtqfwFOkmSJGWWybAkSZIyy2RYkiRJmWUyLEmSpMwyGZYkSVJm7e6PboxYIYTDSKZ8mwisJ5ny7Xe1jUrdQggTgbuAg4F24HfAP8YY14UQ3ggsBUYBK0h+0XBteb8hrVP1hRAuBS4DjooxPmk77nlCCE3AdcDbgFbgpzHGT/T3ejrUdaquEMI7gSuAXPnf/BjjN23LkS+EcDVwCnAg5dfT8vLU2852TezNPcM3A0tijIcBS0jeXDVylIAvxhhDjPEoksmwrwoh5El+wOWcctv9ELgKYKjrVH0hhNnAG4Hnyo9txz3TF0mS4MPK1+XF5eX9vZ4OdZ2qJISQI+ls+FCM8VjgQ8BXy9eXbTnyfQt4M+XX0x6q0Xa2K3tpMhxC2BeYDdxTXnQPMDuEMLl2UamnGOOGGOMPeiz6GXAA8HqgNcbY/euENwPvK/891HWqohBCI8mL6Nk9FtuOe5gQwhjgDODiGGMJIMa4pr/X06GuG55nlHlFYFz57/HAamAStuWIF2NcHmN8oeeyalyHtuuf7JXJMDADWBlj7AIo/7+qvFwjTLm34mzg28BMenwajjG+DORDCPvsxjpV1+XA3THGFT2W2Y57noNJvia9NITwaAjhByGEE+j/9XSo61RF5Q8z7wP+TwjhOZKexjOwLfdk1Wg727Vsb02GtWe5EWgBFtc6EA1OCOFNwHHAl2odi3ZbHTALeDzGeBxwPvBNYExNo9KghRAKwDzg72OMBwDvAr6GbSn1am9Nhl8ApocQ6gDK/08rL9cIUr5R4FDgf8YYi8DzJMMlutdPAooxxg27sU7V8xbgCOCPIYQVwP7Ag8Ah2I57mueBTspfmcYYfw68DGyj79fT/l5rfR2unWOBaTHGHwOU/3+VZDy4bblnGmr72K4V2CuT4fKd508AHygv+gBJb8e6mgWlXYQQriQZI/ruGGNbefEvgVHlr2cBzgL+YzfXqUpijFfFGKfFGA+MMR4IvAicDCzEdtyjlIekPAz8NWy/y3xf4Bn6eD3t77XW1+GaehHYP4QQAEIIRwBTSGbteQLbco8z1PaxXSuTK5VKtY6hKkIIh5NMFzIB2EgyXUisbVTqFkI4EniS5I12W3nxH2OM7wkh/AXJHa1N/GlqrTXl/Ya0TsOj3Dv8zvLUarbjHiaEMAu4jWSapQ7gszHGB/p7PR3qOlVXCOF/AReQ3EgHcGmM8Vu25cgXQrgBeC+wH8m3M+tjjEdWo+1s18RemwxLkiRJA9krh0lIkiRJlTAZliRJUmaZDEuSJCmzTIYlSZKUWSbDkiRJyiyTYUmSJGWWybAkDbOQeCKEsCWE8KmUynwqhPDWNMqSpCxxnmFJGmYhhK8Ar8QYP13rWCQp6+wZlqThdwDwVK2DkCTZMyxJwyqE8BDwFpKfO+4EZscYn+lluzuArcBBwInAr4BTSH5i98PAGuADMcbHy9uvAD4eY/x+COEy4M+AVuA9wPPAh2OMj1bzuUnSnsieYUkaRjHGvwJ+BHwyxjimt0S4h/cBFwGTgDbgp8Bj5cdfB67tZ9+/A+4FxgPfBhbvdvCStBcyGZakkeu+GOMvY4ytwH1Aa4zxzhhjF/DvwOv62Xd5jPH+8rZ3AccMQ7yStMcxGZakkWtNj7+39fJ4TD/7vtTj761AUwihkGJskrRXMBmWJElSZpkMS5IkKbNMhiVJkpRZTq0mSZKkzLJnWJIkSZnlncWSVCMhhKdIfo1uZ/8YY/zX4Y5HkrLIYRKSJEnKLIdJSJIkKbNMhiVJkpRZJsOSJEnKLJNhSZIkZZbJsCRJkjLr/wcNspNoq+PXFAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plot_feature_distribution(train_data, 'f_min', 'species_id', \"Minimum frequency distribution, TP data, grouped by species id\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2021-02-02T12:42:41.326084\n image/svg+xml\n \n \n Matplotlib v3.3.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAGJCAYAAABiuU6SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABNNElEQVR4nO3deZhcVZ3/8fetrZf0kqTTWUmAEDgiW4wgMBJh5ofgxjgKUWCEcVQUjMxEIQMBAoQAAQMkQAKJIGsUxAXGUZkoI0bjhggoIBxACNkXupPQnU51dy2/P+7tTvVat7ur+nbnfl7Pkydd954651unblV969S55zrZbBYRERERkTCLBB2AiIiIiEjQlBSLiIiISOgpKRYRERGR0FNSLCIiIiKhp6RYREREREJPSbGIiIiIhJ6SYpFOjDGNxpipQcfRmTGmzBjzP8aY3caY7wcdT9CMMacYYzbm3H7ZGHNKger+V2PMz3NuZ40x0wpRt1ffkDzG/DLGXGuMWRV0HMNJ5+O1m/0FPcYGizHmCmPMvYNZpzFmnTHm1EK2KQIQCzoAkb4wxqwDJgITrbXv5Gx/HpgOHGytXTeQNqy1FQO5fxGdBYwDaqy1qaCDGWqstUfkK2OMOQh4C4j31ofW2u8A3ylEXMaYXwGrrLXtH/LFPsaMMTOBJ72bDlAO7Mkp8l7gIeAEIAUkgV8Ds621WwocywPARmvtVYWsV4YGa+2Nw6FOET80UizD0VvAOW03jDFH4X7o7+8OBF7rKZkzxuhLbgHsD/1orf2NtbbCS77bviyMbNtmrV3vbfuaV+YwYCSwJIBwi2Z/eC5FZPDoDUOGo4eB84E7vdv/hjvqdX1bAWPMx73bhwC7gW9ba6/19n0WuAk4xlr7rjHmo8D9wFHW2h3GmCxwqLX2DW+Uqwk4GJgJ/AU4E7jca3cbcI619nmv7vb7ercfwBsl837aXwXcAVwKpIGLgBZgKTAGuKW7URJjzAJgHuAYY/4F+E/v/hcAz3j9cbcxZiFwA/AZoAR4HPi6tXavV89c4BtAFrgK+HbOY/0VOSOaxpjPA1+y1p7k3X6P1+fvB3YA8621j+U8zj3AQcCHgL8B51pr/+7tP8J7jO8HWoHbgfuAN4HJ1to6r9wMYDXuLwGtnfqgDLgb+CSwxXvOcvev8+J9yhjzAeAu3GRvL/Ada+03cEdDAXYZYwA+DJhu+vGN3Mfu+ZgxZg5Q5bV9mbU2Y4y5Fphmrf2cF8dBeKPRwALc4+YEY8xS4AFr7dc6HWPVXr9+FPdYuwe40av788CXgD8AXwR2AV+11raNAheEtbbeGPND3OOxC2PMwcADwAwvFttp//e9x1mG+xq5yFr7sjHmy8C/Almv75621p5hjLkct8/HAhuAK621j/uJ1YvlQeB9wB+9WKqttZ/L6fsvAdcA67zX3RVee2XA/wIXW2t3t70mrbUH5NS/jn3H0bXAkbivtY8BrwP/bq39i1d2Iu5z9yGgEVhirb3D29fr8dqDLscY7uf0VuBka+2LXt1jgXXAgdbaHZ36Zxru63o67mvt/6y1n/X2ZXHfOzq0Ya3NePu/AMwFxuO+Hr5srX3b29flNWytvbGb4/8E4DbcXyPeBv7TWvsrb9/ngauBWuAd4CrvV5kOuqnzPNz38wqvbpGi0EixDEd/AKqMMYcbY6LA2bjJZq49uAnOSODjwEVeMom19nvA74A7jDE1uB8gX+r84ZLjM7gJ5BigGfg98Jx3+wf07U16PFAKTML9cLgH+BzuB81MYL73od+BtfYa4Ebge95I37e9XcfjJpbjcJPhm3ATwenAtJx2MMZ8BDcZ/zBwKOB7Tp4xZgTwC+C7uInM2cBdxpj35hQ7GzcJHAW84cWDMaYSeAo3GZnoxfV/1tqtwK9w+7fNecCjnRNizzW4X3IOAU7H/VLSk9txP7SrvPKPeds/5P3fNmr6e+92537szqeAY3ETw08CX+ilfQCstVcCv8EbkbXWfq2bYncC1cBU4GTc4/bfc/Yfj5v4jQG+CXzbGOPka7svjDFjcL/sPd9Dke8Cf/ZiWEjXvn8S95gai/va+A6AtfZb3t/f9B7/GV75v+Me79W4x8wqY8wEn+F+FzdhqwGuxT1mOjsZOBz3OPm89+8fcfu4Aljmsy1wn+vvA6O9tp8wxsSNMRHgf3C/BEwC/h8wxxhzune/vhyvbbocY9baFuBR3PeJNufgvoa6e89aCPwc93V4APsGD3psA8AY80ncLw+fxk1afwM84u3r9jXcuWFjzCTgp7gJ7Gjc95sfGmNqvfeQO4CPWmsrgX8AXsjXId57zN24z/NE3Of9gF7vJNJPSopluGobLf4w8AqwKXentfZX1toXrbUZa+1fcd/cT84pMhv4J9yk7H+stT/ppa3HrbV/ttYmcUdek9bah6y1aeB7uCNWfrUCN3hJ36O4Scbt1toGa+3LuCOsx/Shvs3W2ju9KRVJ4Mu4I8P11toG3ET6bK/sZ4D7rbUvWWv34CYUfn0CWGetvd9am/JGxn8IzMop87i19hkvlu/gJuZt991qrb3VWpv0HusfvX0P4n3Ye19wzsF9brvzGdy+q7fWbsD9gO1JKzDNGDPGWttorf1DnsfX3o9to+rduNlrez3uiNk5PZTzLedL3TyvX9YBt9Ix0XvbWnuPd7w9CEzATd4L4Q5jzC7cxG4L7q8InWOcAhyH+8tAs7X217jJYDtr7X1e/M24x9Ux3gh4t6y137fWbvZen9/DHYH9QL5gc2K52lrbYq1dC/y4m6LXWmv3eM/lvwK3WWvftNY24v7icnYfplb82Vr7A+81exvul9oTvDhqrbXXebG8ifslN/f15vd4bdPTMfYgcE7Ol6Hz6Pl10oo71Wqi93pb67ONC4FF1tpXvNfwjcB0Y8yB9P4azvU54GfW2p95z+0vgGdxR9kBMsCRxpgya+0W7z0vn7OAn1hrf+0dX/O9ekQKTtMnZLh6GPen8INxp050YIw5HnfU9EgggTuVoH3FBmvtLu8n32/gjpD1ZlvO33u7ud2Xk6bqvOSm7b7d1d+X+jbk/F2LO7f6z97UAHBPsop6f0/EHe1r83Yf2jkQON5LoNrE6PjBvDXn7yb2PY7JuCOD3flvYIU3Om6A3dbaZ3ooO5GOj7e3+L8IXAe8aox5C1iQ54vPhl72dVfmbS+egRqDO80i97G8jTvy2Ka9X621Td5zW6gT9f7D5pwA2IOJwE7vi1RujJOhPbG/AfcLUi37EpYxuFOXujDGnI/72jvI21Thlc9nIlBvrW3K2bahLZZO23Lv07l/Y/j/YtFel3WntGz06swCEzu9JqK4I6xt7fo9XruLu/0Ys9b+0RjTBJxijNmCO1Lb3ZcBgP/CHS1+xhizE7jVWntfvjZwX+O3G2Nuzdnv4B6Lvb2Gcx0IzDLGnJGzLY47bWaPN3XtUtxfO34LXGKtfTVPnR360aunzkcsIn2mpFiGJWvt216y8zHcBKiz7+L+RPpRa23Sm8/Z/qFrjJmO+7PhI7gjOB8pUGhNdDzpbzzQ4zJMBZDN+fsd3KT6CGvtpm7KbqFj8jCl0/49dI29zQZgjbX2w/2IcQP7Rs868J6bx3BHmN5Dz6NfsC/+ttGlzvHn1vs67shaBPfn4B94U2WyPdylp+25Ore92fu7t37LV/c77BvZ+1tO3d09f0HZAowyxozISYynsO9xnYv7M/ypuPNcq4GduAkVdHr83sjjPbjTDX5vrU0bY17IKZ8vltHGmPKcxLhzQty5zc24/dtmCu6KG9twE672585L8Gs71TU5Z38E96f7zV4db1lrD+0lVl/Ha6e2ujvGYN+vKluBH3i/XHXhTUu6wIv3JOApY8yvrXeeQy9tbMAd2e5uju+B9PAa7mQD8LC19oIeYlsNrPbmW1+PexzMzFPnFtypMG2xlONOoRApOCXFMpx9ERjljRx0PpYrcUeUkt5JV+fizrPDGFOKOwf5CtyTvZ41xnzVWntXAWJ6ATjXGPMy7tSOk3F/Piw6bxTrHmCJMeZr1trt3hy/I70Po8eA+40xD+EmL9d0E/unjbs+6ETc/m0bxf4JcJN3wsuj3rbpQKO19pU8of0EuM07gehu3JH79+b8/PqQ928s7nPSk8eAecaYPwIjgIt7KmiM+Ryw2ronTu7yNmdwTxDM4M4tfS1P3J3N9dquwD1ZqW0u+QvAZd5P+7txf57Ptc1rrwsvIXwMuMEbPR2NO4J6i5+AvBOSTrHWntKnR9IH3hfQZ4EFxpgrcKc5nMG+kcpK3Ln2dbgJZucTRTs//hG4SesOAGPMv+P+ooN3+yDck+W6LK+YE8u1xpircOfin0Gn6RydPIL7/Dzptdk2Nz9ljHkNKDXuibk/xz3+Sjrd//3GmE97j/c/vMf6B9zjqMEYcxnuF+sW3OStzFr7J/pwvObo6RgD9z3rL0AD3c+jBsAYMwv3y8ZG3C8nWTpON+ipjRXAQmPMC9Y9SbIaOM1a+33yv4ZzY/yTN6/6KdxR4hNwzzFo9f5+CvfLeyP+pkH8APijl+A/g/sLkKZ+SlHowJJhy1r7d2ttTwnnV4HrjDENuCeaPZazbxGwwVp7tzdH7XPA9caYnkZ8+uI/cT+kd+HOZXyiAHX2xWW4H0B/MMa8i/sBZACsu2LBUuCXXplfdrrvEtwP9m24o1LtI0bWnZ98Gu5o0Wbc0aqb6ZpAdOHd98O4/bIVd/7oP+bs/y3uh+Nz1jvTvQcLcH/ufQs3geltVPkjwMvGmEbck+7Ottbu9UYXbwB+a4zZ5Z0p79d/404/eQH3ZKJve/H/Andu+V+9/Z2nadwOnGWM2WmM6W5e6cW4o81vAmtxf+W4r5ty3ZkM/LYPj6G/zsU94a8e98tU7pSlh3Cfl024o92d529/G3iv199PWGv/hjtv+ve4x9pRdHwMk3Pq686/AifiJuHX4/Z9cy+x38e+6VZv4c69vxjAWrsb973iXq+9PXT9Zee/gc/iJpjnAZ+21rZ606A+gfvl8C3cUf97cUfKoW/Ha25bXY4xL9YNuCcxZtk3RaM7x+EmkY24ifx/evOde23Duqt/3Aw86r13vIS7Ikre13CnGNtO2NuBO3I8FzfXiOB+4duMexydTA+rnXSq82Xcc0C+iztqvJPi/vomIeZks35+NRSR/ZHptIRcgHH8Eviuj/mtksObdvD/rLek3f7AGwHeYa1d6bP894BXrbtCS6FjuZacpcGCZoy5D/ek0H5dCGWovN5FhipNnxCRQBljjmPf8lDSB9ba6UHHUGjW2ut72+8dL/W4I7Cn4R43Nw1CaIHyppV8mr6tdiMifaDpEyISGGPMg7hTPOZ4P9GK5DMedynFRty5vBdZ7+I5+yvjXpTnJWCxtfatoOMR2V9p+oSIiIiIhJ5GikVEREQk9IKcU1yCe5bsFtzryouIiIiIFFoU92qgf6KX1WqCTIqPo/dlZURERERECmUm7tKX3QoyKd4CsHPnHjIZzWsulJqaCurqGoMOI5TU98FR3wdD/R4c9X1w1PfB6W/fRyIOo0aNAC/37EmQSXEaIJPJKikuMPVncNT3wVHfB0P9Hhz1fXDU98EZYN/3Ol1XJ9qJiIiISOgpKRYRERGR0FNSLCIiIiKh52tOsTGmFFgCnAokgd9ba79sjDkMeBCoAeqA8621rxcrWBEREZGByGazNDbuZu/eRjKZvq8Iu317hEwmU4TIJB8/fR+LJRg1qpZotO+nzfm9xzdxk+HDrLVZY8w4b/sKYLm1dpUx5nPASuCf+hyFiIiIyCDYuXMHjuMwevQ4otEYjuP06f6xWIRUSklxEPL1fTabZc+ed9m5cwdjxkzoc/15p08YYyqA84H51tosgLV2mzFmLDADeMQr+ggwwxhT2+coRERERAZBS0uSkSNriMXifU6IZWhzHIcRI6pIpVr6dX8/I8WH4E6NuMYY849AI3AVsBfYZK1NA1hr08aYzcBkYEe/ohEREREpqiyOo1Oq9lcD+aLjJymOAlOB5621c40xxwP/A8zqd6s5amoqClGN5KitrQw6hNBS3wdHfR8M9Xtw1Pf9s317hFisY1Lcks6SbEn5q6DV/zzk0kSMRDR/knbHHUt4+un/Y8uWzXznO49xyCHTOuy/996V3Hvvym73FVorLTRnerwScr+VREqIk8hbrqe+yNdHuSKRSL9eH36S4vVACm+ahLX2j8aYd3BHiicZY6LeKHEUmAhs6EsAdXWNWgS7gGprK9mxoyHoMEJJfR8c9X0w1O/BUd/3XyaT6TIvdW9zij+9ss3X/aMRh7TPvOW4w8cRKcmfan3wgydz5pmfZfbsC0inO8Zn7au8+OKLjB8/ocu+YtibTfLc5pcKXu+MiUfiOP3viw9+8GQ++9lz+MpXvpi3HzKZTIfXRyTi+BqEzfv7gbX2HeBp4MMA3ooTY4HXgBeAc7yi5+COJmvqhIiIiIhPxxwznXHjxnfZ3tLSwm233cyll14eQFTB6KkvetpeSH4n1VwIXGGMeRF4FDjPWrvL236xMeY14GLvtoiIiIgM0L33ruC00z7KhAkTgw4lFHwtyWatfRM4pZvtrwLHFzgmERERkVB76aW/Yu0rXHTRxUGHEho6/VJERERkiHn++edYt+4tZs36Z8466wx27NjON75xMc8884egQ9tv9f1yHyLSLpZuJptMApDM7iXa1L+1Eds4paWkoiWFCE1ERIax8877POed9/n222eddQbf/OYSpk4t7uoTYaakWGQAsskkdc8+D0BLZQkNDQNbxqbm2PfBCCXFIiJhsnTpYtaseZr6+jrmzJlNVVU1q1Y9FnRYgeipLwajj5xsNrDl0A4C3tKSbIWlZXoGV3TP7vakuLJASXF6RHUhQgsVHffBUL8HR33ff1u3vs348Qd22JbKQHOrv3WKnYhD1mfeUhKPERtmE1XTkRaa0wP71bM7JdEE0Uz+dYp74/cS252f45wl2Q4G1vVY/4CiExERERnmYhGI+VhPGPwnZsNVNJOg3BlY8tqtYdBlw+z7i4iIiIhI4SkpFhEREZHQU1IsIiIiIqGnpFhEREREQk9JsYiIiIiEnpJiEREREQk9LckmIiIioZagGVqTvspG0g4Rv9dXiJfSQu8XZNq9excLF17Npk0bicfjHHDAFObOvYLq6mouuuiLJL2rptbUjGHu3HlMmDDRX9v9lHul1kLye8XWZcuWsmbNL9myZTMPPfRo+xX85s27hC1bNuM4DmVl5Xz963M59FBT0BiVFIuIiEi4tSZpfON5X0WjEYe0z6S4Ytr7IN57Iug4Dueeez4zZhwLwPLlt7NixZ3Mm3c1t956JxUVFQA89tgj3HnnEm68cbGvtvsr90qtheT3iq0zZ57CrFlnM3v2BR22X3nlAkaOrCKVyvCb3/yKRYuu4777vlPQGDV9QkRERCQgVVXV7QkxwBFHHMnWrVsB2hNigKamPUQizqDHN9iOOWY648aN77I9ty8aGxtxnMKnsBopFhERERkCMpkMjz/+Q0466UPt2y699D947TVLdXU1S5YsDzC64N1ww3X88Y+/B+CWW+4oeP0aKRYREREZApYsWUx5eRlnnvmZ9m233HIHTzzxJKeeejoPPPDtAKML3pVXXs2PfvRTvvzlr3LXXbcXvH4lxSIiIiIBW7ZsKRs3rmfBgkVEIh3Ts0gkwic+8UlWr/5ZQNENLR/5yMd57rk/s3v3roLWq6RYREREJEArVy7H2ldYtOhWEokEADt37mTXrl3tZZ5++ikOOWRaQBEGq6mpiW3btrbfXrv211RVVVFVVV3QdjSnWERERCQgb775dx5++H4mT57ChRd+AYAJEybypS9dyA03XEs6nSKbzTJhwkTmz78u4GiLb+nSxaxZ8zT19XXMmTObqqpq7rjjbubPv5zm5iSOE6Gqqoqbb16C4xT2xEMnm/W51l7hHQS8VVfXSMbven+SV21tJTt2NAQdRmhE9+xuX7qmsrKEhobmAdVXc+z7SI8o7DffMNBxHwz1e3DU9/23devbjB9/YIdtfVqnOOL4z1t8rFM81AS9TnFvYrEIqVQmb7nOz3Ek4lBTUwFwMLCux/oHFJ2IiIjIMNdCSd71hNv4TcyGq1S0xNd6wvsjzSkWERERkdBTUiwiIiIioaekWERERERCT0mxiIiIiISekmIRERERCT2tPiEiIiKhlo600Jxu8VU2knHI+FzOtiSaIJpJ5C23bNlS1qz5JVu2bOahhx5l6tRp7N69i4ULr2bTpo3E43EOOGAKc+dewahRo3y13W8ZaG1NF7zaeDzqayi2u74AaG5u5tZbl/CnP/2RRCLBEUcczWWXXVnQGJUUi4iISKg1p1t4bvNLvspGohEyaX9Lss2YeCTlTv6keObMU5g162xmz76gfZvjOJx77vnMmHEsAMuX386KFXcyb97Vvtrur9bWNK+/sq3g9R56+DjiJdG85brrC4C7776DkpIEjzzyIxzHob6+ruAxKikWERERCdAxx0zvsq2qqro9IQY44ogjefzxHw5iVMHori+ampr43//9KT/+8f+2X8Vu9OiagretpFhERERkCMtkMjz++A856aQPBR1KIDZt2khVVTXf/vZKnn32WcrKyrjggq92m0APhE60ExERERnClixZTHl5GWee+ZmgQwlEJpNh8+ZNHHbYe/j2tx/moov+gyuvnMuePY0FbUdJsYiIiMgQtWzZUjZuXM+CBYuIRMKZto0bN55oNMppp30EcKeSjBw5kg0b1he0nXD2roiIiMgQt3Llcqx9hUWLbiWRyH/C3v5q5MiRzJhxLM888wcA1q9/m50765k0aXJB29GcYhEREZEALV26mDVrnqa+vo45c2ZTVVXNddct4uGH72fy5ClceOEXAJgwYSKLFt0ScLTF1V1frFr1GJdeOo+bblrI7bffRiwW46qrrqOysrKgbTtZn2vtFcFBwFt1dY1kMoHFsN+pra1kx46GoMMIjeie3dQ9+zwAlZUlNDQ0D6i+mmPfR3pEdSFCCxUd98FQvwdHfd9/W7e+zfjxB3bY1qd1iqMOmXRh1ykeUgJep7g3sViEVCr/cnidn+NIxKGmpgLgYGBdj/UPLDwRERGR4S2aSfhaTxggFomQyvhbpxifxYaUCL7WE94faU6xiIiIiISekmIRERERCT0lxSIiIiISekqKRURERCT0lBSLiIiISOgpKRYRERGR0NOSbCIiIhJqsXQz2WTSV1kn4hD1eX0Fp7SUVLQkb7lly5ayZs0v2bJlMw899ChTp05jy5bNzJt3aXuZxsYG9uzZw5NP/tJX2/3lZFtItQ5szf3uxOIlZH0se9ddXwD87ndruffeFaRSrVRVVXPFFdcwceKkwsZY0NpEREREhplsMtl+IaZ8olGHtM+Ld9Qc+z4YkT8pnjnzFGbNOpvZsy9o3zZhwkQeeOC77bdvv/1W0umUr3YHItXazLpX/1rweg96z9FEfVyquru+ePfdd7nhhmu4554HmDhxMqtX/4xbbrmJ2267s6Ax+kqKjTHrgKT3D+Aya+1qY8wJwEqgDPcKIZ+z1m4vaIQiIiIi+7Fjjpne6/7W1lZ+8YsnufXWZYMTUIC664tNmzYwalQNU6YcSCqV4cQTP8jChVeza9cuRo4cWbC2+zKn+Cxr7XTv32pjTARYBcy21h4G/Bq4qWCRiYiIiAhr165hzJixGPOeoEMJxOTJB1JfX8ff/vYyAD//+ZMAbNu2taDtDGT6xPuBpLV2rXd7Be5o8RcGGpSIiIiIuH760x/z8Y//c9BhBKaiooIFC25k6dJbaW5u5oQT/oGKikqi0cJejrovSfF3jDEOsBa4ApgCvN2201r7jjEmYowZba2tL2iUIiIiIiG0Y8d2XnjhOebPvy7oUAJ13HHHc+KJJ5JKZaivr+ORRx5m0qQDCtqG36R4prV2gzGmBFgKLAMeL0QANTUVhahGctTWVgYdQmgks3tpqdx3EkVlZdcTKmJVlaTebfBVX3l5glI9f/2i4z4Y6vfghK3v03sbyTQ3ddgWKSknWtY1j+it7PbtEWKxjrNHnYhDNOr4jsVv2UjEwYn1bfXbaLRjfKtX/5QPfnAmNTWj+1RPf2VTDpGI/77wKxJxuvR7Prl9UVf3DjU1Y4hE4J577uJTnzqTysoRPbQV6dfrw1dSbK3d4P3fbIy5C/gxcDtwYFsZY8wYINPXUeK6ukYyPpc2CVJpaZxksjXoMPKqra1kxw5/CdhgKmb/BfncRJtaaGhwl66prCxp/ztX1ZhxNDS846u+RFMLDT6fv2I97sGsN3fbQNodqsf9/k79Hpyh3vfFeB9JtO6m8Y2OK0RUTHsfLY3ZLu31VjaTyZBKZTrsi2ayvleU6MvqE5lMlnSntrqzdOli1qx5mvr6Oi6++CKqqqpZteoxAH7yk/9hzpxLu8RcLJlMtih5WSaT9fUYeuqLu+9ezosv/oXW1lY+8IET+PKXv9ZjfZlMpsPrIxJxfA3C5k2KjTEjgJi1drc3feJs4AXgz0CZMeYkb17xhcD387YoIiIiMoQ4paXu8mk+RCKO76TRKS31VW7OnLnMmTO3232PPvojX3UUSixewkHvOboo9frptZ764vLL5xOLRYr65cDPSPE44IfGmCgQBf4GfNVamzHGnAesNMaU4i3JVrRIRURERIogFS3xtZ4wgBOL+Br9Ha6yTsLXesJ9rrfgNRZe3qTYWvsm0O3XJ2vt74CjCh2UiIiIiMhgCuUV7TpfztHvZRhFRET2Nz1d4lifjRI2oUyKO1/O0e9lGEVERPY3PV3iWJ+NEjZ9WxtDRERERGQ/pKRYREREREIvlNMnRERERNploLU17atoujXje0m2eDzqa/hx2bKlrFnzS7Zs2cxDDz3K1KnTAFi//m1uuOFadu/eTXV1NVddtYDJk6f4aru/Ejhki7C6hhOL0OJjDYp58y5h8+bNRCIOZWXlfP3rczn0UFPweLqjpFhERERCrbU1zeuvbPNVNhKJkMn4SxoPPXwc8ZJo3nIzZ57CrFlnM3v2BR2233LLIj796VmcfvrHWL36ZyxefCN33LHCV9v9lU1laHyzT9dh86Vi6miI5b9S3pVXLqCiwr3Qxm9+8ysWLbqO++77TsHj6Y6mT4iIiIgE6JhjpjNu3PgO23burOe1117l1FNPB+DUU0/ntddeZefOnUGEOGjaEmKAxsZGHGfwUlWNFIuIiIgMMdu2bWPMmLFEo+5IczQaZcyYWrZv38aoUaMCjq64brppIc888wcAbrnljkFrVyPFIiIiIjJkXH75fH70o5/y5S9/lbvuun3Q2lVSLCIiIjLEjBs3jnfe2U467Z4AmE6neeedHYwdOy7gyAbPRz7ycZ577s/s3r1rUNpTUiwiIiIyxIwaNZpp0w7jqadWA/DUU6s59FCzX0+daGpqYtu2re231679NVVVVVRVVQ9K+5pTLCIiIhKgpUsXs2bN09TX1zFnzmyqqqpZteox5s69guuvv4b777+XyspK5s9fEHSoRZVM7mX+/MtJJvcSiUSpqqri5puX4Dj5V60oBCXFIiIiEmrxeJRDD/c3LSEScfq2TrEPc+bMZc6cuV22H3jgQdxzz4O+6igUJxZxl08rQr3kWad49OgavvWtBwretl9KikVERCTcIvhaTxggFouQKsLFLYaKFrK+1hPuO39fJIKkOcUiIiIiEnpKikVEREQk9JQUi4iIiEjoKSkWERERkdBTUiwiIiIioaekWERERERCT0uyiYiISKg52RZSrc2+ymZT/tcpjsVLyDqJvOV++9vfcO+9d5PNQjab5QtfuICTT/4nX20UXppUqrXgtcZicaD3Ze92797FwoVXs2nTRuLxOAccMIW5c68YtKv4KSkWERGRUEu1NrPu1b/6KtuXi3cc9J6jiSZ6T4qz2SwLF17NXXfdw9Sp03jjjde56KIvMnPmKUQig/+DfirVyptvvlXweqdOPZhYrPek2HEczj33fGbMOBaA5ctvZ8WKO5k37+qCx9MdTZ8QERERCVAkEqGxsRGAxsYGamrGBJIQB62qqro9IQY44ogj2bp166C1r5FiERERkYA4jsN11y1i3rxLKC0to6mpicWLbw86rMBlMhkef/yHnHTShwatTSXFIiIiIgFJpVI8/PADLFp0K0cfPZ2//vUFrr76clat+j7l5eVBhxeYJUsWU15explnfmbQ2gzf2LyIiIjIEPHGG69RV7eDo4+eDsDRR0+nrKyMt98u/Lze4WLZsqVs3LieBQsWDeo0EiXFIiIiIgGprR3L9u3bWb9+HQDr1r1FfX09kyYdEGxgAVm5cjnWvsKiRbeSyHOSYqFp+oSIiIhIQGpqxnDppZdz1VWX4TjuWOW8eVdTVVUdcGSD7803/87DD9/P5MlTuPDCLwAwYcJEFi26ZVDaV1IsIiIioRaLl3DQe472VbYvS7LF4iX4KXnaaR/ltNM+6qvOYovF4kydenBR6gX3xMJstvtemTr1ENaufbbgbfulpFhERERCLesk8q4n3CYWi5BKZfzVO5CgAhPNu57w/kpzikVEREQk9JQUi4iIiEjoKSmWQRGJOEGHICIiItIjJcUyKKJRHWoiIiIydClTEREREZHQ0+oTIiIiEmoJHLI+V5SIZjI4Ppdkc2IRWnysQbF+/dvccMO17N69m+rqaq66agGTJ0/x1UahxWIpyDQXvuJICamU/7Tzvvu+xX33fYuHHnqUqVOnFT6ebigpFhERkVDLpjI0vlnvq2w04pD2mRRXTB0Nsfzn1NxyyyI+/elZnH76x1i9+mcsXnwjd9yxwlcbBZdpZtf2Vwte7cix78Fv2mntq7z88kuMHz+h4HH0RtMnRERERAKyc2c9r732KqeeejoAp556Oq+99io7d+4MOLJgtLS0cNttN3PppZcPettKikVEREQCsm3bNsaMGUs06l4wIxqNMmZMLdu3bws4smDce+8KTjvto0yYMHHQ21ZSLCIiIiKBe+mlv2LtK3z607MCaV9JsYiIiEhAxo0bxzvvbCedTgOQTqd5550djB07LuDIBt/zzz/HunVvMWvWP3PWWWewY8d2vvGNi3nmmT8MSvs60U5EREQkIKNGjWbatMN46qnVnH76x3jqqdUceqhh1KhRQYc26M477/Ocd97n22+fddYZfPObS7T6hMj+LDphIi1O15dfQzZGtjlFSTxGTL/jiIiEwty5V3D99ddw//33UllZyfz5C4IOKZSUFIsEoMWJ8czzb3fZPqI+Q6akjOMOH0esRC9PEZHB4MQi7vJpPvRlSTYnFgEf6xQfeOBB3HPPg77qLLpIibd8WuHrxd9S0O1+8IP/KXwcvejTp64x5hrgWuAoa+1LxpgTgJVAGbAO+Jy1dnuhgxQREREplhayvtYTBsjGIqR8XujDT0I81LgX2CjCoEwfE+Ig+P6B1hgzAzgBeNu7HQFWAbOttYcBvwZuKkaQIiIiIiLF5CspNsaUAMuBi3I2vx9IWmvXerdXAJ8pbHgiIiIiIsXnd6T4OmCVtXZdzrYpeKPGANbad4CIMcbfpBwRERERkSEi76QRY8yJwLFAUa63V1NTUYxqe5XM7qWlsqT9dnl5gtLayrz3q6wsLWZYBVPr47EEobQ0XrS6g3puOh9LlTl/tyktjZHttL0pEaW0tOvLL5GIEa8opby8hNrR5XnbL9bjHsx6c7cNpN2hetzv73rq93SylUxzusO2SEmUaBHfB8KmUMd85/exNn4/G3tS6PeR1l17cSo6xllWnqB6ZGWX9noru317hNgAl/cZ6P3F3/zt7vjp+0gk0q/Xh5+Z1CcDhwNvGWMADgBWA3cAB7YVMsaMATLW2vq+BFBX10jG51mchRJtaqGhobn9dqKphYYdDb3ep7Q0TjLZWuzQBqy2tpIdeR5LECorS2loSBal7iCfm9xjqbKypMNx1cZJprpsT1emSSZTXetrSZFsTNLU1MyOdLrL/lzFetyDWW/utoG0O1SP+/1db/0eT2VpfLPjx0HF1NG0xorzPhA2hTzmO38mtvHz2diTYryPJFpbaGzsGGe2qYWW1oYu7fVWNpPJ9OFEua5ifTrRTjpzHIdstn95n9++z2QyHV4fkYjjaxA2b7ptrb3JWjvRWnuQtfYgYCNwOrAYKDPGnOQVvRD4ft4WRURERESGmH6vuWGtzRhjzgNWGmNK8ZZkK1RgIiIiIoMjTSrlb2Q7k3F8/8Idi8WBaN5yy5YtZc2aX7Jly2YeeujR9iu4/fa3v+Hee+8mm4VsNssXvnABJ5/8T77a7q9M1KGlCL/gJyIOkXTv9e7evYuFC69m06aNxONxDjhgCnPnXkFDw7ssXnwj9fV1RCIRDj/8CC655DJKSgo7RafPSbE3Wtz29++AowoZkIiIiMhgSqVaefPNt3yVjUT8J8VTpx5MLJY/KZ458xRmzTqb2bMvaN+WzWZZuPBq7rrrHqZOncYbb7zORRd9kZkzTyESKd6c5pZMlr9u213weo8eV02+FNZxHM4993xmzDgWgOXLb2fFijv5/Oe/xMUXf533vve9tLSkuPbaK3nkkVV8/vNfKmiMmikuIiIiEqBjjpnOuHHju2yPRCI0NjYC0NjYQE3NmKImxEGrqqpuT4gBjjjiSLZu3cqECRM57DD3KnttI8Vbt24pePu6jqyIiIjIEOM4Dtddt4h58y6htLSMpqYmFi++PeiwBk0mk+Hxx3/ISSd9qMP25uYkP/3pj7nwwtkFb1NJsYiIiMgQk0qlePjhB1i06FaOPno6f/3rC1x99eWsWvV9ysvzL9k53C1Zspjy8jLOPHPfdeFSqRTXXHMF73//sZx00skFb3P/HYMXERERGabeeOM16up2cPTR0wE4+ujplJWV8fbb/uY+D2fLli1l48b1LFiwqH26SDqd5pprrqSysoo5c+YWpV0lxSIiIiJDTG3tWLZv38769esAWLfuLerr65k06YBgAyuylSuXY+0rLFp0K4lEAnCnUtx447VEo1Euv3w+jtP/i3/0RtMnRAbRiCljAXi363U7REQkpJYuXcyaNU9TX1/HnDmzqaqqZtWqx7j00su56qrLcBx3DHPevKupqqoOONriefPNv/Pww/czefIULrzwCwBMmDCRM874F1avfpJDDpnGF794HgBHHXUMl1xyWUHbV1IsMoictleckmIRkSEjFoszderBvsr2ZUk2d53i/ObMmdvtlIDTTvsop532UV91FEoi4nD0uMIn3omIA3nWKZ469RDWrn22231r1z5b9KsJKikWERGRkIv6Wk8Y9v/LPEfS2bzrCfdLnoR4KNCcYhEREREJPSXFIiIiIhJ6SoplyIjFdDiKiIhIMJSFyJDhdz6XiIiISKEpKRYRERGR0NPqEyIiIhJqsVgKMs2+ykZwiEV8rqQQKSGVyp9qLVu2lDVrfsmWLZt56KFHmTp1GgBnnXUGiUSCRKIEgIsuupjjjz/RX9v9lMpAc2vh1w0ticfwM0vyd79by7333k0qlaKqqporrriGiRMnFTye7igpFhERkXDLNLNr+6u+ivZlneKRY9+Dn1Rr5sxTmDXrbGbPvqDLvuuvv7k9SR4Mza0p/vTKtoLXe9zh44iV9N4X7777LjfccA13330fU6YcyOrVP+OWW27ittvuLHg83dH0CREREZEAHXPMdMaNGx90GIHbtGkDo0bVMGXKgQCceOIHeeaZ37Nr165BaV8jxSIiIiJD1IIF84EsRx01na98ZTaVlZVBh1Q0kycfSH19Ha+88jKHH34EP//5kwBs27aVkSNHFr19jRSLiIiIDEHLl9/Dgw8+wj33PARkWbLkm0GHVFQVFRUsWHAjd9xxG1/84nns3LmTiopKotHBWZ1KI8UiIiIiQ1DblIpEIsGnPjWLyy//RsARFd9xxx3PcccdD0B9fR2PPPIwkyYdMChta6RYREREZIjZu3cvjY2NAGSzWZ56ajXTph0WcFTFV1f3DgCZTIaVK5fzyU+eSVlZ2aC0rZFiERERkQAtXbqYNWuepr6+jjlzZlNVVc3NN9/GVVf9F5lMhnQ6w0EHHcwll1wedKhFd889d/Pii3+htbWVD3zgBC688GuD1raSYhEREQm3SIm3fJqPon1Yko1ICWTyF5szZy5z5sztsv3++7/rr50CKonHOO7wcUWp14/LL59f8Lb9UlIsIiIioeZeYMNfShSLREhlfGS64CshHmpiEfKuJ7y/0pxiEREREQk9JcUiIiIiEnpKikVEREQk9JQUi4iIiEjoKSkWERERkdBTUiwiIiIioRfONTdEREREPJmoQ4vPtYedbJas46/eRMQhks5f77JlS1mz5pds2bKZhx56lKlTp/lroAgSNENrsvAVx0tpoaTXIrt372LhwqvZtGkj8XicAw6Ywty5VzBq1CgWLLiK559/lnfeeYef//zXlJeXFzxEJcUiIiISai2ZLH/dtttX2UjUIeMj0QU4elw1pT7KzZx5CrNmnc3s2Rf4qreoWpM0vvF8wautmPY+iPeeFDuOw7nnns+MGccCsHz57axYcSfz5l3NJz7xSb7+9Uv52MdOLXhsbTR9QkRERCRAxxwznXHjxgcdRuCqqqrbE2KAI444kq1btwLw/vcfx+jRo4vavpJiERERERlSMpkMjz/+Q0466UOD1qaSYhEREREZUpYsWUx5eRlnnvmZQWtTc4pFREREZMhYtmwpGzeu5+ablxCJDN74rZJiERERERkSVq5cjrWvsHjx7SQSiUFtW0mxiIiISICWLl3MmjVPU19fx5w5s6mqqmbVqseCDmvQvfnm33n44fuZPHkKF174BQAmTJjIokW3cMUVc3nllZcBOPfcM5k69RBuu21ZQdtXUiwiIiKhlog4HD2u2ldZJ+KQ9bmmcSLigI/l2+bMmcucOXN91Vl08VJ3+bQi1JvP1KmHsHbts93uu/HGxcRiEVKpTKEja6ekWEREREItks76Wk8YIOY4pLL+kmI/CfFQ00JJ3vWE91dafUJEREREQk9JsYiIiIiEnpJiEREREQk9JcUiIiIiEnq+TrQzxjwBHAxkgEbgYmvtC8aYw4AHgRqgDjjfWvt6kWIVERERESkKv6tP/Ju1djeAMeaTwH3ADGAFsNxau8oY8zlgJfBPRYlUREREpAhSGWhuTfkq67T6X5KtJB4j5uM3+ebmZu688zaeffYZEokERxxxNJdddqWvNgotHWmhOd1S8HpLogmimd4vxrF79y4WLryaTZs2Eo/HOeCAKcydewWjRo3ipZde5JZbbiSZbGbChAlcffVCRo0aXdAYfSXFbQmxpxrIGGPG4ibGH/a2PwIsM8bUWmt3FDRKERERkSJpbk3xp1e2+SobjTikfSbFxx0+jlhJ/lTr7rvvIJFI8MgjP8JxHOrr63zVXwzN6Rae2/xSweudMfFIyp3ek2LHcTj33POZMeNYAJYvv50VK+7kssuuYuHC+cyfv4AjjzyGBx64l7vvvpMrrrimoDH6nlNsjLnXGLMeuAH4N2AysMlamwbw/t/sbRcRERGRPJqamvjf//0pX/rSRTiOA8Do0TUBRxWMqqrq9oQY4IgjjmTr1q1Y+wqJRILp092LivzLv5zF008/VfD2fV+8w1r7JQBjzHnAYmB+IQKoqakoRDV9kszupaVy38LU5eUJSmsr896vstLv0t7BqvXxWIJQWhrPW6a/fRzUc9P5WKqs7LrgeWlpjKy3Pe6NGCQyUUpLu778EokY8YpSystLqB1dnrf9Yj3uwaw3d9tA2h2qx/3+rqd+b92dxKno+HyWlyeIVw+P99HhoFDHfOf3sTZ+Pxt7Uuj3kdZde3EqOsZZVp6gemRll/Z6K7t9e4RYpzkNTqtDNOL4jsVvWSfidGmrs23bNlNdPZIHH7yHP//5WcrKyvnKV77angAOtkjGIRIt/DoMkahDLNJWb/7+y2QyPPHED/nQh05mx47tTJgwEYBYLMKYMaPJZLLs2dNAdXXXKxFGIpF+vT76fEU7a+3DxphvARuBScaYqLU2bYyJAhOBDX2pr66ukYzPnyEKJdrUQkNDc/vtRFMLDTsaer1PaWmcZLK12KENWG1tJTvyPJYgVFaW0tCQ7LVMf/s4yOcm91iqrCzpcFy1cZKp9u0Vze6ctZaWGMlk1/lr0ZYUycYkTU3N7Eine227WI97MOvN3TaQdofqcb+/663f46ksjY0dX/PZphZaW4b+++hwUMhjvvNnYhs/n409Kcb7SKK1hcbGjnFmm1poaW3o0l5vZTOZTJdLBWczWd9TIvoyfSKbyea9LHFLS4pNmzZyyCGGiy76T15++SUuu+zrfO97jzNixOAPHGayWTLpwl9KOZPOkspkcByHrI8rAt56682UlZXxqU/N4te/frr9Pvv6M0s63fW5BDehzn19RCKOr0HYvF8FjDEVxpjJObfPAOqB7cALwDnernOA5zWfWERERMSfcePGE41G+fCHTwfcKQMjR45kw4b1AUcWnGXLlrJx43oWLFhEJBJh3LjxbN26pX3/rl27iEQiVFV1HSUeCD/j4yOA7xtjXjTGvAB8HTjDWpsFLgQuNsa8Blzs3RYRERERH0aOHMmMGcfypz/9EYD1699m5856Jk0K5ylaK1cux9pXWLToVhIJ98Q8Yw6nubmZF154HoAnnvgB//iPpxa87bzTJ6y124ATetj3KnB8oYMSERERCYtLL53HokXXsWzZEmKxGFdddR2VleE7T+LNN//Oww/fz+TJU7jwwi8AMGHCRBYtuoX5869j8eJFNDc3M368uyRbofV5TrGIiIjI/qQkHuO4w8f5KutE+rZOsR+TJh3AsmXf8lW22EqiCWZMPLIo9ZJnqvLUqYewdu2z3e476qhj+M53Hss7R3sglBSLSFF0XgzfiUXY09zx5MLcbd3t9ytb30RTP+/bG78L74vI8BaL4Gs9YXBXPyhmYha0aCaRdz3hfhkGXaakWESKovNi+AdPquatTbs7lMnd1t1+vyorSmlo7H11k/7wu/C+iIgMfxoDEREREZHQU1IsIiIiIqGnpFhEREREQk9JsYiIiIiEnpJiEREREQk9nVYtIiIioZagGVr9rWATSTtEfK5TTLyUFkp6LbJly2bmzbu0/XZjYwN79uzhySd/6a+NAoulm8kmC7+aj1NaSirae18AnHXWGSQSCRIJt+xFF13M8cefWPB4uqOkWERERMKtNUnjG8/7KhqNOKR9JsUV094H8d4TwQkTJvLAA99tv3377beSThd+3XW/sskkdc/664u+qDn2fTAif1IMcP31NzN16rSCx5CPpk+IiIiIDAGtra384hdP8vGPfzLoUEJJI8UiIiIiQ8DatWsYM2Ysxrwn6FACtWDBfCDLUUdN5ytfmU1lZeWgtKuRYhEREZEh4Kc//TEf//g/Bx1GoJYvv4cHH3yEe+55CMiyZMk3B61tJcUiIiIiAduxYzsvvPAcp532kaBDCdS4ceMBSCQSfOpTs3jxxb8MWttKikVEREQC9uSTP+HEE0+iunpk0KEEZu/evTQ2NgKQzWZ56qnVTJt22KC1rznFIiIiIgH72c9+wpw5l+YvuB+rr6/jqqv+i0wmQzqd4aCDDuaSSy4ftPaVFIuIiEi4xUvd5dN8iEQcMn1Yp9ivRx/9ke+yxeSUlrrLpxWh3nwmTTqA++//bt5yxaKkWEREREKthZK86wm3icUipFKZIkcUnFS0xPd6wvsbzSkWERERkdBTUiwiIiIioaekWERERELEIZvdf6c/hF0263O+dzeUFIuIiEhoJBKl7Nr1DqlU64ASKBl6stkse/a8SyyW6Nf9daKdiIiIhMaoUbU0Nu6mvn4bmUy6z/ePRCJkMhpp7j8H6N+XET99H4slGDWqtl/1KykWERGR0HAch8rKkVRWjuzX/WtrK9mxo6GwQYVIaWmcZLK1X/ctdt9r+oSIiIiIhJ6SYhEREREJPSXFIiIiIhJ6SopFREREJPSUFIuIiIhI6CkpFhEREZHQU1IsIiIiIqGnpFhEREREQk8X7xCRohpXM4JsFuKxKGNHj+iwL3dbPBbl0KkVvLu3qdf6nEyMrdtaihaviIiEk5JiESmqbBbW/mUTY0aW8c6uvR325W4bM7KM9x9dxe/f+kuv9Z148DFFi1VERMJL0ydEREREJPSUFIuIiIhI6CkpFhEREZHQU1IsIiIiIqGnpFhEREREQk9JsYiIiIiEnpJiEREREQk9JcUiIiIiEnpKikVEREQk9HRFO5EhKJOFPc2pXss4sUjeMv1RqHoz2QIEIyIiMkjyJsXGmBrgYeAQoAV4HfiKtXaHMeYEYCVQBqwDPmet3V68cEXCIZXJ8JfXdvRa5uBJ1by1aXfB2y5UvcccVluAaERERAaHn+kTWeCb1lpjrT0K+DtwkzEmAqwCZltrDwN+DdxUvFBFRERERIojb1Jsra231v4qZ9MfgAOB9wNJa+1ab/sK4DMFj1BEREREpMj6dKKdNzp8EfBjYArwdts+a+07QMQYM7qgEYqIiIiIFFlfT7S7E2gElgGfKkQANTUVhaimT5LZvbRUlrTfLi9PUFpbmfd+lZWlxQyrYGp9PJYglJbG85bpbx8H9dx0PpYqc/5uU1oaI+ttj5e4L7lEJkppadeXXyIRI15RSjweo7Ki98dUWhLPW6Y/ClVv22NIJKKUlsSJx9z/O5TJ2RaPRYlGI5TkOU4SiRiVFV2/zxejL8rLS6gdXV7wevcnPb3ftO5O4nR6TsrLE8Srh8f76HBQqPf6zu9jbfx+Nvak0O/Lrbv24lR0jLOsPEH1yMou7eUrO1BD9XN2uBjIsVHMvvedFBtjbgEOBc6w1maMMetxp1G07R8DZKy19X0JoK6ukcwgn6YebWqhoaG5/XaiqYWGHQ293qe0NE4y2Vrs0AastraSHXkeSxAqK0tpaEj2Wqa/fRzkc5N7LFVWlnQ4rto4yVT79gpvVYeWlhjJZNcVHqItKZKNSVpbUzQ09t5fyeqSvGX6o1D1tj2GskSUZHMrrWUxks0dn6fcba1lMdLpDM15nsuWlhQNjZkO2yorSovSF01NzexIpwte7/6it/ebeCpLY6fnJNvUQmvL0H8fHQ4K+V7f+TOxjZ/Pxp4U43050dpCY2PHOLNNLbS0NnRpr7eyAzVUP2eHi4EcG/3t+0jE8TUI62v6hDHmRtw5xP9irW07yv4MlBljTvJuXwh8v8+RioiIiIgEzM+SbEcA84DXgN8ZYwDestZ+yhhzHrDSGFOKtyRbEWMVERERESmKvEmxtfZlwOlh3++AowodlIiIiIjIYNJlnkVEREQk9JQUi4iIiEjoKSkWERERkdBTUiwiIiIioaekWERERERCT0mxiIiIiISekmIRERERCT0lxSIiIiISekqKRURERCT0lBSLiIiISOgpKRYRERGR0IsFHYCISF9UVcRhQmuHbYlEhvLKfd/xnUyMrdtaBjs0EREZxpQUi8iwkibF79/6S4dtJaVxmpP7EuUTDz5msMMSEZFhTtMnRERERCT0lBSLiIiISOgpKRYRERGR0FNSLCIiIiKhp6RYREREREJPSbGIiIiIhJ6SYhEREREJPSXFIiIiIhJ6SopFREREJPSUFIuIiIhI6CkpFhEREZHQU1IsIiIiIqGnpFhEREREQk9JsYiIiIiEnpJiEREREQk9JcUiIiIiEnpKikVEREQk9JQUi4iIiEjoKSkWERERkdBTUiwiIiIioaekWERERERCT0mxiIiIiISekmIRERERCT0lxSIiIiISekqKRQpoxJSxjJgyNugwREREpI9iQQcgsj9x9IoSEREZljRSLCIiIiKhp6RYREREREJPSbGIiIiIhJ5mQIpIn42rGUE223uZdBbGjh7BiLL44AQlIiIyAEqKRaTPsllY+5dNvZY5YFwlG7c1cNoJBw1OUCIiIgOQNyk2xtwCnAkcBBxlrX3J234Y8CBQA9QB51trXy9eqCIiIiIixeFnTvETwIeAtzttXwEst9YeBiwHVhY2NBERERGRwZE3KbbWrrXWbsjdZowZC8wAHvE2PQLMMMbUFj5EEREREZHi6u/qE5OBTdbaNID3/2Zvu4iIiIjIsBL4iXY1NRWD3mYyu5eWypL22+XlCUprK/Per7KytJhhFUytj8cShNLS/KsQ9LePg3puOh9LiZKYF8++baWlMbLe7bi3P5GJUlra9eWXSMSIV5QSj8eorOj9MZWWxPOW6Q8/9SYSUUpLen8+o9EIpSVxohGH0pI48VjX++Rui8eiRKMRSvIcJz2Vyd2WSMSorBj4ipPl5SXUji4fcD1BSidbyTSnO2yLlESJ+ng9+tHT+03r7iROp+OovDxBvHp4vI8OB4V6r+/8PtbG72djTwr9vty6ay9ORcc4y8oTVI+s7NJevrIDNVQ/Z4eLgRwbxez7/ibFG4BJxpiotTZtjIkCE73tfVJX10gmk2dtpwKLNrXQ0NDcfjvR1ELDjoZe71NaGieZbC12aANWW1vJjjyPJQiVlaU0NCR7LdPfPg7yuck9liorS2hpTgHQmHN8OclUe5kKb39LS4xkMtW1vpYUycYkra0pGhp7769kdUneMv3hp96yRJRkc+99nk5nSDa3ks5kSTa30loW63Kf3G2tZTHS6QzNeZ7L7sqUlMY7bGtpSdHQmOm1Hj+amprZkU7nLziExVNZGt+s77CtYupoWmMDP3Z6e7+Jp7I0djqOsk0ttLYM/ffR4aCQ7/WdPxPb+Pls7Ekx3pcTrS00NnaMM9vUQktrQ5f2eis7UEP1c3a4GMix0d++j0QcX4Ow/RpKsdZuB14AzvE2nQM8b63d0Z/6RERERESClDcpNsbcYYzZCBwAPGWMednbdSFwsTHmNeBi77aIiIiIyLCTd/qEtfY/gP/oZvurwPHFCEpEREREZDAFfqKdSF+kMtDc2nEubjKdJZ1y532WxGPEBn5+lYiIiISMkmIZVppbU/zplW0dtsVjUVq9pPi4w8cRK9FhLSIiIn2jMTURERERCT0lxSIiIiISekqKRURERCT0lBSLiIiISOgpKRYRERGR0FNSLCIiIiKhp6RYREREREJPSbGIiIiIhJ6SYhEREREJPSXFIiIiIhJ6SopFREREJPSUFIuIiIhI6CkpFhEREZHQU1IsIiIiIqGnpFhEREREQk9JsYiIiIiEnpJiEREREQk9JcUiIiIiEnpKikVEREQk9GJBByAi+0QcoHkvsVQL06qyvZatKYVonjIArZEEb+9qLVCEIiIi+yclxSJDSDaVYs/GLewdCZv/9GKvZaNHHcrmF1/PW+fEfzgOcAoToIiIyH5K0ydEREREJPSUFIuIiIhI6CkpFhEREZHQ05xiEZGAxNLNZJPJgtXnlJaSipYUrD4RkTBRUiwiEpBsMknds88XrL6aY98HI5QUi4j0h6ZPiIiIiEjoKSkWERERkdBTUiwiIiIioaekWERERERCT0mxiIiIiISekmIRERERCT0lxSIiIiISekqKRURERCT0lBSLiIiISOgpKRYRERGR0FNSLCIiIiKhp6RYREREREJPSbGIiIiIhJ6SYhEREREJvVjQAexvYulmsslk+22ntJRUtCTAiERERIaHzp+hoM9RGTwDToqNMYcBDwI1QB1wvrX29YHWO1xlk0nqnn2+/XbNse+DEXoxi4iI5NP5MxT0OSqDpxDTJ1YAy621hwHLgZUFqFNEREREZNAMKCk2xowFZgCPeJseAWYYY2oHGpiIiIiIyGAZ6PSJycAma20awFqbNsZs9rbvyHPfKEAk4gwwhL6LxKLEyss63M7micNxHF+x9qfuQguiT/NxnPxx+enjWDRCeWm8w7Z4LEJrKtK+fzAff+7zHS1NkE0k3Dhyj4FEfF8Zb388G2dEZRmdlZclyFaWES9JUFY1ote246UlecsAJBJxykv990kiHu3Sx52VJKJUV/T+c+aIsjjVFSUk4m7ZivI4ralMhzK52yrK4yRiMarKynuPr5syJSVxmp3WfbfjMcpLs73W40exj6fO7xeFqK/z+00kCtGSWKdt/t7PfLXZQz3FblcK917f03E4kM8vv5+ZfmJpi8OJRomWdNznRKNEIk6X9norWwg6jvuvv8dGm34dV/vuE+2tnJPN9v+DwxjzfuAha+0ROdv+BnzOWvtcnrufBPym342LiIiIiPg3E1jb086BjhRvACYZY6LeKHEUmOhtz+dPXnBbgPQA4xARERER6U4UmICbe/ZoQEmxtXa7MeYF4Bxglff/89bafFMnAJrpJVsXERERESmQv+crMKDpEwDGmPfgLsk2CtiJuySbHVClIiIiIiKDaMBJsYiIiIjIcKfLPIuIiIhI6CkpFhEREZHQU1IsIiIiIqGnpFhEREREQk9JsYiIiIiE3kAv3iFFZIypAR4GDgFagNeBr1hrdxhjTgBWAmXAOtyrCG737tevfdKVMeYa4FrgKGvtS+r34jPGlAJLgFOBJPB7a+2XjTGH4S7/WAPU4S7/+Lp3n37tk46MMZ8AFgKO92+BtfZH6vvCM8bcApwJHIT3/uJtL3hf63noqLu+7+3z1ruP3vsHqKdjPmd/h89bb9ug9rtGioe2LPBNa62x1h6Fu/D0TcaYCO7FUmZbaw8Dfg3cBNDffdKVMWYGcALwtndb/T44vombDB/mHffzve0rgOVeHy7HfcNjgPvEY4xxcJOC86y104HzgAe941d9X3hPAB/Ce3/JUYy+1vPQ0RN07ftuP29B7/0F9ATdH/NdPm+9bYPe70qKhzBrbb219lc5m/4AHAi8H0haa9uuCLgC+Iz3d3/3SQ5jTAnuh8dFOZvV70VmjKkAzgfmW2uzANbabcaYscAM4BGv6CPADGNMbX/3Dc4jGnYyQLX390hgCzAG9X3BWWvXWms35G4rxnGu56Gr7vq+l89b0Ht/QXTX79Dj5y0E0O9KiocJ75vPRcCPgSnkfJuy1r4DRIwxowewTzq6DlhlrV2Xs039XnyH4P68e40x5lljzK+MMScBk4FN1to0gPf/Zm97f/dJDu9LyGeA/zbGvI07qnM+6vvBVIy+1vPQR50+b0Hv/cXW3ectBNDvSoqHjzuBRmBZ0IHs74wxJwLHAncFHUsIRYGpwPPW2mOBy4AfARWBRhUCxpgYMA/4pLX2QOAM4DHU9xI++rwdJEPt81ZJ8TDgTU4/FPistTYDrGffzzoYY8YAGWtt/QD2yT4nA4cDbxlj1gEHAKuBaajfi209kML7qdda+0fgHWAvMMkYEwXw/p8IbPD+9WefdDQdmGit/S2A9/8e3Pnd6vvB0d/+1PNQIN183oI+c4up289bY8xpBNDvSoqHOGPMjbjzY/7FWtvsbf4zUOb9rAxwIfD9Ae4Tj7X2JmvtRGvtQdbag4CNwOnAYtTvReX9zPU08GFoP2t+LPAa8AJwjlf0HNzR5B3eGcV93lf0BzP8bAQOMMYYAGPM4cA43LPwX0B9X3T97U89D4XRw+ct6DO3aHr6vLXW/pwA+t3JZrMDekBSPMaYI4CXcBOCvd7mt6y1nzLG/APuGcSl7FtuZJt3v37tk+55314/Yd1le9TvRWaMmQrch7t8VCtwpbX2SWPMe3CXlRoF7MRdVsp69+nXPunIGPOvwOW4J9wBXGOtfUJ9X3jGmDuATwPjcX8NqbPWHlGMvtbz0FF3fY87n77bz1vvPnrvH6CejvlOZdbhfd56twe135UUi4iIiEjoafqEiIiIiISekmIRERERCT0lxSIiIiISekqKRURERCT0lBSLiIiISOgpKRYRERGR0IsFHYCISFh4F8b4HnAI7vrLdwQckoiIeJQUi4gMnv8CnrbWTg86EBER6UjTJ0REBs+BwMtBByEiIl3pinYiIoPAGPNL4GTcS1engBnW2te6KfcA0AQcDMwE/gKciXv55X8DtgHnWGuf98pfDlwAjAU24E7LeNzbdzcw1lp7pnf7ZuBY4FRrrd78RURyaKRYRGQQWGv/CfgN8DVrbUV3CXGOzwBXAWOAZuD3wHPe7R8At+WU/Ttu8lwNLABWGWMmePsuAY4yxnzeGDMT+CLwb0qIRUS6UlIsIjL0PG6t/bO1Ngk8DiSttQ9Za9O4J+q9r62gtfb71trN1tqMtfZ7wOvAB7x9TcB5uEn0KuBia+3GwX4wIiLDgU60ExEZerbl/L23m9sVbTeMMecD3wAO8jZV4I4oA2Ct/aMx5k3c6RWPFSleEZFhTyPFIiLDlDHmQOAe4GtAjbV2JPAS4OSUmQ2UAJtxV78QEZFuKCkWERm+RgBZYAeAMebfgSPbdhpjDgOuBz6HO43iv4wx0wc/TBGRoU9JsYjIMGWt/RtwK+6JeNuAo4DfAhhjYrjziG+21v7FWvs6cAXwsDGmJKCQRUSGLC3JJiIiIiKhp5FiEREREQk9rT4hIjLIjDEv417drrOvWGu/M9jxiIiIpk+IiIiIiGj6hIiIiIiIkmIRERERCT0lxSIiIiISekqKRURERCT0lBSLiIiISOj9f8Myiz0SGYCWAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plot_feature_distribution(train_data, 'f_max', 'species_id', \"Maximum frequency distribution, TP data, grouped by species id\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2021-02-02T12:42:42.367446\n image/svg+xml\n \n \n Matplotlib v3.3.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsoAAAGJCAYAAACTshUfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqWElEQVR4nO3deZhcdZ3v8XdvSWcDIWnBKIuKfEXlijCMzDyizqIzzsioiAgKjs64r4xXr8voFdfBfUOFUVERBQHH9Y7jjOOgoqKIoIL4BZVAlAhNEjSdJp3udN8/zulQ6fx6S6pS3Z3363nypOucU+d8q37nVH3qV79zqmNsbAxJkiRJO+psdwGSJEnSXGRQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqcCgLM1CRAxExP3aXcdEEbEkIr4SEb+PiEvaXU+7RcSjI+I3Dbevi4hHN2ndT4+I/2y4PRYRhzVj3fX65uQ+NlMRcWZEXNDuOuaTiftrYX5T97E9JSJeGxEf25PrjIg1EfGXzdym9m7d7S5AapaIWAOsBlZn5h0N068GjgLum5lrdmcbmbl8d+7fQicBBwArM3Ok3cXMNZn54OmWiYhDgZuAnqmew8z8DPCZZtQVEZcBF2Tm9jf+Vu9jEXE88LX6ZgewFNjcsMiDgPOB44ARYAvwbeBFmbmuybV8EvhNZr6umevV3JCZb5sP65SmYo+yFpqbgFPHb0TEkVRBYKE7BLhhsoAXEX4oboKF8Dxm5ncyc3kdyMc/QNxjfFpm3lJPe3G9zOHAPYD3tqHcllkIbSmp9Xyh0ELzaeAZwAfr239P1Tv2lvEFIuJv69v3B34PfDwzz6znPRU4C3hoZv4hIh4HfAI4MjP7I2IMeEBm/rLuDRsE7gscD/wEeDLw6nq7twGnZubV9bq337e+/Unq3rR6WMAFwAeAVwDbgBcAW4H3AauAd5V6UyLijcBrgI6IeCLwsvr+zwF+WD8fH4mINwNvBU4GFgNfAP4pM++q1/NK4OXAGPA64OMNj/UyGno+I+KZwLMz8xH17QfWz/kxQD/w+sy8uOFxbgYOBR4J/Bx4Wmb+qp7/4PoxHgMMA+8HzgN+DRyUmevr5Y4Gvk71jcHwhOdgCfAR4AnAurrNGuevqev9RkT8MfBhqgB4F/CZzHw5Va8pwJ0RAfAYIArP4y8bH3vtbyLiDGCfetuvyszRiDgTOCwzT6vrOJS61xp4I9V+c1xEvA/4ZGa+eMI+tm/9vD6Oal/7KPC2et3PBJ4NXAH8I3An8MLMHO8tborM3BARn6faH3cSEfcFPgkcXdeSE+ZfUj/OJVTHyAsy87qIeC7wdGCsfu7+JzNPiIhXUz3n9wTWAv+cmV+YSa11LZ8CHgb8oK5l38w8reG5fzbwBmBNfdy9tt7eEuA/gJdk5u/Hj8nMvE/D+tdw9350JvAQqmPtb4AbgWdl5k/qZVdTtd0jgQHgvZn5gXrelPvrJHbax6jew38HPCozf1av+57AGuCQzOyf8PwcRnVcH0V1rP13Zj61njdG9dqxwzYyc7Se/w/AK4EDqY6H52bmzfW8nY7hzHxbYf8/DngP1bcWNwMvy8zL6nnPBP4v0AfcAbyu/vZmB4V1nk71er68XrfUVPYoa6G5AtgnIo6IiC7gFKoA2mgzVei5B/C3wAvqgElmfg74HvCBiFhJ9aby7IlvOA1OpgqVq4Ah4PvAj+vblzK7F+4DgV7g3lRvGB8FTqN68zkeeH0dBHaQmW8A3gZ8ru4R/Hg96+FUYfMAqoB8FlU4PAo4rGE7RMRfUwX0xwAPAGY8xi8ilgH/BXyWKtycAnw4Ih7UsNgpVMFwP+CXdT1ExArgG1QBZXVd139n5u+Ay6ie33GnAxdNDMm1N1B98Lk/8FdUH1Qm836qN/J96uUvrqc/sv5/vHf1+/Xtic9jyZOAP6IKi08A/mGK7QOQmf8MfIe65zYzX1xY7IPAvsD9gEdR7bfPapj/cKowuAp4B/DxiOiYbtuzERGrqD4AXj3JIp8FrqpreDM7P/dfo9qn7kl1bHwGIDP/tf77HfXjP6Fe/ldU+/u+VPvMBRFxrxmW+1mqELcSOJNqn5noUcARVPvJM+t/f0b1HC8Hzp7htqBq60uA/ettfzEieiKiE/gK1QeDewN/AZwREX9V3282++u4nfaxzNwKXET1OjHuVKpjqPSa9WbgP6mOw/twd4fCpNsAiIgnUH2gOJEqyH4HuLCeVzyGJ244Iu4N/D+qULs/1evN5yOir34N+QDwuMxcAfwpcM10T0j9GvMRqnZeTdXu95nyTtIsGZS1EI33Kj8GuB74bePMzLwsM3+WmaOZ+VOqF/xHNSzyIuDPqYLaVzLzq1Ns6wuZeVVmbqHqod2Smedn5jbgc1Q9WzM1DLy1DoIXUQWP92fmpsy8jqon9qGzWN+tmfnBejjGFuC5VD3IGzJzE1W4PqVe9mTgE5l5bWZupgoZM/V4YE1mfiIzR+oe9M8DT2lY5guZ+cO6ls9QhfXx+/4uM9+dmVvqx/qDet6nqANA/aHnVKq2LTmZ6rnbkJlrqd50JzMMHBYRqzJzIDOvmObxbX8ex3vfC95eb/sWqp61UydZbsYaPui9pn5e1gDvZsfwd3NmfrTe3z4F3Isq0DfDByLiTqqwt47q24aJNR4MHEv1DcJQZn6bKiBul5nn1fUPUe1XD617yosy85LMvLU+Pj9H1VP7x9MV21DL/83MrZl5OfDlwqJnZubmui2fDrwnM3+dmQNU38ycMothGVdl5qX1Mfseqg+6x9V19GXmm+pafk31wbfxeJvp/jpusn3sU8CpDR+QTmfy42SYapjW6vp4u3yG23g+8C+ZeX19DL8NOCoiDmHqY7jRacC/Z+a/1237X8CPqHrjAUaBh0TEksxcV7/mTeck4KuZ+e16/3p9vR6paRx6oYXo01Rfo9+XatjFDiLi4VS9qw8BFlENQ9h+pYjMvLP+uvjlVD1pU7mt4e+7Crdnc2LW+jrwjN+3tP7ZrG9tw999VGO1r6qHFUB1IldX/fdqql7BcTfPYjuHAA+vQ9W4bnZ8s/5dw9+D3P04DqLqQSz5EnBO3YsewO8z84eTLLuaHR/vVPX/I/Am4BcRcRPwxmk+DK2dYl5pmZvrenbXKqohGo2P5WaqHspx25/XzBys27ZZJwO+NBtOMpzEamBj/eGqscaDYHvYfyvVh6Y+7g4xq6iGPe0kIp5BdewdWk9aXi8/ndXAhswcbJi2dryWCdMa7zPx+e1m5h82tq8rq+Ewv6nXOQasnnBMdFH1xI5vd6b7a6nu7ftYZv4gIgaBR0fEOqoe3dIHBID/Q9Wr/MOI2Ai8OzPPm24bVMf4+yPi3Q3zO6j2xamO4UaHAE+JiBMapvVQDbnZXA97ewXVtyLfBf53Zv5imnXu8DzW61k/g1qkGTMoa8HJzJvrAPQ3VKFoos9Sfb36uMzcUo8P3f5GHBFHUX3leCFVT89fN6m0QXY8sfBAYNJLQjXBWMPfd1AF7Qdn5m8Ly65jx0Bx8IT5m9m59nFrgW9l5mN2oca13N3LtoO6bS6m6ol6IJP3ksHd9Y/3Qk2sv3G9N1L1wHVSfZV8aT3MZmySu0w2vdHEbd9a/z3V8zbduu/g7h7Anzesu9R+7bIO2C8iljWE5YO5+3E9jeor/L+kGje7L7CRKmTBhMdf91B+lGqowvczc1tEXNOw/HS17B8RSxvC8sSQPHGbt1I9v+MOprrSx21UIWx729Whv2/Cug5qmN9J9bX/rfU6bsrMB0xR64z21wnbKu1jcPe3L78DLq2/4dpJPaTpOXW9jwC+ERHfzvq8iSm2sZaqB7w0ZvgQJjmGJ1gLfDoznzNJbV8Hvl6P334L1X5w/DTrXEc1jGa8lqVUwy+kpjEoa6H6R2C/uodh4n6+gqrnaUt9YtfTqMbtERG9VGOaX0t1QtmPIuKFmfnhJtR0DfC0iLiOaljIo6i+emy5urfro8B7I+LFmXl7PWbwIfUb1MXAJyLifKpA84ZC7SdGdf3S1VTP73hv91eBs+qTai6qpx0FDGTm9dOU9lXgPfVJSh+h6uF/UMNXt+fX/+5J1SaTuRh4TUT8AFgGvGSyBSPiNODrWZ2ceWc9eZTqJMRRqrGqN0xT90SvrLe9nOqEqPGx6dcAr6qHBfye6qv9RrfV29tJHRIvBt5a97LuT9XT+q6ZFFSf9PTozHz0rB7JLNQfSn8EvDEiXks1ROIE7u7RXEE1dn89VeiceDLqxMe/jCrI9gNExLOovvmhvn0o1Ql5O13qsaGWMyPidVRj+09gwlCQCS6kap+v1dscH+s/EhE3AL1Rnfz7n1T73+IJ9z8mIk6sH+9L68d6BdV+tCkiXkX1YXsrVaBbkplXMov9tcFk+xhUr1k/ATZRHpcNQEQ8heoDyG+oPrCMseNQhcm2cQ7w5oi4JqsTMfcFHpuZlzD9MdxY45X1OO1vUPUmH0d1zsJw/fc3qD7QDzCzIRSXAj+oQ/8Pqb4pckipmsodSgtSZv4qMycLoS8E3hQRm6hOZru4Yd6/AGsz8yP1mLfTgLdExGQ9Q7PxMqo37jupxkZ+sQnrnI1XUb0pXRERf6B6UwqArK6U8D7gm/Uy35xw3/dSvdnfRtV7tb1nKavxzo+l6lW6lapX6+3sHCp2Ut/3MVTPy++oxqP+WcP871K9Yf446zPsJ/FGqq+Kb6IKNVP1Pv81cF1EDFCd2HdKZt5V90K+FfhuRNxZn6E/U1+iGrpyDdUJSx+v6/8vqrHqP63nTxzi8X7gpIjYGBGlcaovoeqV/jVwOdW3IecVlis5CPjuLB7Drnoa1UmFG6g+YDUOdzqfql1+S9UrPnE8+MeBB9XP9xcz8+dU47C/T7WvHcmOj+GghvWVPB34E6pg/haq535oitrP4+6hWjdRjeV/CUBm/p7qteJj9fY2s/M3QF8CnkoVOk8HTszM4XoI1eOpPjDeRPXtwMeoetRhdvtr47Z22sfqWtdSnSg5xt3DO0qOpQqWA1Th/mX1+Okpt5HVVUfeDlxUv3ZcS3UllmmP4Qk1jp8U2E/Vw/xKqhzSSfUh8Faq/ehRTHKVlQnrvI7qnJLPUvUub6S139JpL9QxNjaTbxUl7W1iwuXs2ljHN4HPzmC8rBrUQxb+IuvL6y0EdU9xf2aeO8PlPwf8IqsrwzS7ljNpuExZu0XEeVQnnu7Sj7fMleNdmmsceiFpzoqIY7n7UlWahcw8qt01NFtmvmWq+fX+soGqp/axVPvNWXugtLaqh6ScyOyusiNpBhx6IWlOiohPUQ0POaP+eleazoFUl3UcoBob/IKsf/BnoYrqh4SuBd6ZmTe1ux5poXHohSRJklRgj7IkSZJUMFfHKC+mOjt3HbBtmmUlSZKkXdFF9aumV1K4Ss5cDcrHMvUlbiRJkqRmOZ7qMpw7mKtBeR3Axo2bGR1t3RjqlSuXs379QMvWrz3Htlw4bMuFw7ZcGGzHhcO23FlnZwf77bcM6uw50VwNytsARkfHWhqUx7ehhcG2XDhsy4XDtlwYbMeFw7acVHGoryfzSZIkSQUGZUmSJKnAoCxJkiQVzNUxypIkSfPGtm0jbNzYz8jI1naXMqnbb+9kdHS03WW0TXf3Ivbbr4+urpnHX4OyJEnSbtq4sZ/e3qUsW3YgHR0d7S6nqLu7k5GRvTMoj42NsXnzH9i4sZ9Vq+414/s59EKSJGk3jYxsZdmyfeZsSN7bdXR0sGzZPrPu8TcoS5IkNYEheW7blfZx6IUkSVKTjYzC0PBI09e7uKeb7hl0c5599vv41re+ybp1t3L++Rdxv/sd1vRaGi1iCIa3NH/FPb1sZfGMFz/vvH/lvPP+tWmP2aAsSZLUZEPDI1x5/W1NX++xRxxA9+Lp49vxxz+apzzlFF70ouc0vYai4S0M/PLqpq92+WEPg56ZBeXMX3Dddddy4IEzH4M8HYdeSJIkLTAPfehRHHDAge0uY4/ZunUr73nP23nFK17d1PUalCVJkjSvfexj5/DYxz6Oe91rdVPXa1CWJEnSvHXttT8l83pOPPEpTV+3QVmSJEnz1tVX/5g1a27iKU/5O0466QT6+2/n5S9/CT/84RW7vW5P5pugVWep7qqZnt0qSZK0Nzr99Gdy+unP3H77pJNO4B3veK9XvWiFVp2luqtmenarJEnSuPe9751861v/w4YN6znjjBexzz77ctFFl7a7rHnHBCZJktRki3u6OfaIA1qy3pk444xXcsYZr2z69ifV01tdyq0F652tSy/9StM2b1CWJElqsu5O9qpvhLeyeMbXO55PHP0qSZIkFRiUJUmSpAKDsiRJUhOMjY21uwRNYVfax6AsSZK0m7q7F7F58x8My3PU2NgYmzf/ge7uRbO6394zylySJKlF9tuvj40b+xkYuLPdpUyqs7OT0dHRdpfRNt3di9hvv77Z3adFtUiSJO01urq6WbXqXu0uY0p9fSvo79/U7jLmFYdeSJIkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqcCgLEmSJBUYlCVJkqQCg7IkSZJUYFCWJEmSCgzKkiRJUoFBWZIkSSowKEuSJEkFBmVJkiSpwKAsSZIkFXRPt0BErAQ+Ddwf2ArcCDwvM/sjYgz4GTBaL356Zv6svt8JwDvrbVwFPCszB5v/ECRJkqTmm0mP8hjwjsyMzDwS+BVwVsP8P83Mo+p/4yF5OfBR4ITMPAzYBLyiybVLkiRJLTNtUM7MDZl5WcOkK4BDprnb44AfZeaN9e1zgKfuUoWSJElSG0w79KJRRHQCLwC+3DD5sojoBr4GnJmZQ8DBwM0Ny9wCHLSbtUqSJEl7zKyCMvBBYAA4u759cGaujYh9qMYxvx54XbOKW7lyebNWNam+vhU73B7bMMiK5b0t3+5MLV26mL79l7a7jHlhYltq/rItFw7bcmGwHRcO23J2ZhyUI+JdwAOoxh2PAmTm2vr/P0TEx4CX14vfAvxZw90PBtbOtrj16wcYHR2b7d1mrK9vBf39m3aYNjg0wqaBLS3b5mwNDg7Rv21bu8uY80ptqfnJtlw4bMuFwXZcOGzLnXV2dkzZMTujy8NFxNuAY4An1kMriIj9ImJJ/Xc3cBJwTX2X/wCOjYgH1LefD1y8Kw9AkiRJaodpg3JEPBh4DbAa+F5EXBMRXwAeCPwgIn4C/BQYphp6QWZuAp4LfDUifgnsC7yrNQ9BkiRJar5ph15k5nVAxySz/9cU9/sS8KVdrEuSJElqK3+ZT5IkSSowKEuSJEkFBmVJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqcCgLEmSJBUYlCVJkqQCg7IkSZJUYFCWJEmSCgzKkiRJUoFBWZIkSSowKEuSJEkFBmVJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqcCgLEmSJBUYlCVJkqQCg7IkSZJU0D3dAhGxEvg0cH9gK3Aj8LzM7I+I44BzgSXAGuC0zLy9vt+k8yRJkqS5biY9ymPAOzIzMvNI4FfAWRHRCVwAvCgzDwe+DZwFMNU8SZIkaT6YNihn5obMvKxh0hXAIcAxwJbMvLyefg5wcv33VPMkSZKkOW9WY5TrnuIXAF8GDgZuHp+XmXcAnRGx/zTzJEmSpDlv2jHKE3wQGADOBp7U/HJ2tHLl8lZvgr6+FTvcHtswyIrlvS3f7kwtXbqYvv2XtruMeWFiW2r+si0XDttyYbAdFw7bcnZmHJQj4l3AA4ATMnM0Im6hGoIxPn8VMJqZG6aaN5vi1q8fYHR0bDZ3mZW+vhX092/aYdrg0AibBra0bJuzNTg4RP+2be0uY84rtaXmJ9ty4bAtFwbbceGwLXfW2dkxZcfsjIZeRMTbqMYdPzEzh+rJVwFLIuIR9e3nA5fMYJ4kSZI0583k8nAPBl4D3AB8LyIAbsrMJ0XE6cC5EdFLfQk4gLrHuThPkiRJmg+mDcqZeR3QMcm87wFHznaeJEmSNNf5y3ySJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVzPaX+bSHdXR2sHlopN1lbLe4p5tuP15JkqS9gEF5jhsa3sZPbuhvdxnbHXvEAXQvdreRJEkLn32DkiRJUoFBWZIkSSowKEuSJEkFBmVJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqcCgLEmSJBUYlCVJkqQCg7IkSZJUYFCWJEmSCgzKkiRJUoFBWZIkSSowKEuSJEkFBmVJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgq6Z7JQRLwLeDJwKHBkZl5bT18DbKn/AbwqM79ezzsOOBdYAqwBTsvM25tYuyRJktQyM+1R/iLwSODmwryTMvOo+t94SO4ELgBelJmHA98GzmpCvZIkSdIeMaOgnJmXZ+baWaz3GGBLZl5e3z4HOHm2xUmSJEnt0owxyp+JiJ9GxIcj4h71tINp6H3OzDuAzojYvwnbkyRJklpuRmOUp3B8Zq6NiMXA+4CzgdN2u6raypXLm7WqSfX1rdjh9tiGQVYs7235dmeqp6d7TtWzdOli+vZf2u4yiia2peYv23LhsC0XBttx4bAtZ2e3gvL4cIzMHIqIDwNfrmfdAhwyvlxErAJGM3PDbNa/fv0Ao6Nju1PilPr6VtDfv2mHaYNDI2wa2DLJPfa84eG5Vc/g4BD927a1u4ydlNpS85NtuXDYlguD7bhw2JY76+zsmLJjdpeHXkTEsojYt/67AzgFuKaefRWwJCIeUd9+PnDJrm5LkiRJ2tNmenm4DwAnAgcC34iI9cAJwOcjogvoAn4OvBAgM0cj4nTg3Ijopb48XPPLlyRJklpjRkE5M18KvLQw62FT3Od7wJG7WJckSZLUVv4ynyRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqcCgLEmSJBUYlCVJkqQCg7IkSZJUYFCWJEmSCgzKkiRJUoFBWZIkSSowKEuSJEkFBmVJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVJBd7sLkNQaI6MwNDzS7jK2W9zTTbcfzSVJ84hBWVqghoZHuPL629pdxnbHHnEA3Yt9yZEkzR/270iSJEkFBmVJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQXT/kxWRLwLeDJwKHBkZl5bTz8c+BSwElgPPCMzb5xuniRJkjQfzKRH+YvAI4GbJ0w/B/hQZh4OfAg4d4bzJEmSpDlv2qCcmZdn5trGaRFxT+Bo4MJ60oXA0RHRN9W85pUtSZIktdaujlE+CPhtZm4DqP+/tZ4+1TxJkiRpXph2jHI7rVy5vOXb6OtbscPtsQ2DrFje2/LtzlRPT/ecqmfp0sX07b+03WUUTWzLvd1c25dns+/sibbcNLiVu7aMtHw7M7Wkt5sVSxe1u4ym87hcGGzHhcO2nJ1dDcprgXtHRFdmbouILmB1Pb1jinmzsn79AKOjY7tY4vT6+lbQ379ph2mDQyNsGtjSsm3O1vDw3KpncHCI/m3b2l3GTkptubeba/vyTPedPdWWm4dGuPL621q+nZk69ogD2LJ5qN1lNJXH5cJgOy4ctuXOOjs7puyY3aWhF5l5O3ANcGo96VTg6szsn2rermxLkiRJaodpg3JEfCAifgPcB/hGRFxXz3o+8JKIuAF4SX2bGcyTJEmS5rxph15k5kuBlxam/wJ4+CT3mXSeJEmSNB/4y3ySJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVLBtL/MJ81lI6MwNDzC2IZBBodG2lrL4p5uuv3oKUnSgmFQ1rw2NDzCldffxorlvWwa2NLWWo494gC6F3tISZK0UNj/JUmSJBUYlCVJkqQCg7IkSZJUYFCWJEmSCgzKkiRJUoFBWZIkSSowKEuSJEkFBmVJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVdLe7AGmh6OjsYPPQSLvL2G50rN0VSJI0vxmUpSYZGt7GT27ob3cZ2z308L52lyBJ0rzm0AtJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqaB7d1cQEWuALfU/gFdl5tcj4jjgXGAJsAY4LTNv393tSZIkSXvCbgfl2kmZee34jYjoBC4AnpmZl0fE64CzgH9o0vYkSZKklmrV0ItjgC2ZeXl9+xzg5BZtS5IkSWq6ZgXlz0TETyPiwxFxD+Bg4ObxmZl5B9AZEfs3aXuSJElSSzVj6MXxmbk2IhYD7wPOBr7QhPWycuXyZqxmSn19K3a4PbZhkBXLe1u+3Znq6emeU/UsWtzDWNfcOQe0q4ftz0+7n6eenm4eeO8l9IxtbWsd4/brGuTI1V3tLmO7fTs307Gt3nd6etnaUW6v2zcMQlfr627cd+aCpUsX07f/0h2mbbtrgNGhwT1ey9aRbQyPjO32eu783SZ6mlBPT3cHi7on3yc6Fy+la0nr3y/GbRrcyl1bRvbY9qazpLebFUsXtXQbE98rNX/ZlrOz20E5M9fW/w9FxIeBLwPvBw4ZXyYiVgGjmblhNutev36A0dHdf7GeTF/fCvr7N+0wbXBohE0DWya5x543PDy36hkYHOInN/S3u4ztHnp4H5sGtrBieW/bn6fh4RHGhgZZ9/Mr21rHuK4DVrDutk3TL7iHdB2wgt/U9ax80LHkHR3F5fZUW47vO3PF4OAQ/du27TBt0fDvGfjl1Xu8lq0j21iz7g+7vZ7exT1sGRre7fUceq99pgzKyw97GFsHWvdeMdHmoRGuvP62Pba96Rx7xAFs2TzUsvWX3is1P9mWO+vs7JiyY3a3ugYjYllE7Fv/3QGcAlwDXAUsiYhH1Is+H7hkd7YlSZIk7Um726N8APD5iOgCuoCfAy/MzNGIOB04NyJ6qS8Pt5vbkiRJkvaY3QrKmflr4GGTzPsecOTurF+SJElql7lzVpYkSZI0hzTrB0ckSZI0j4yMwtDw3LmCy+KebrrnWBeuQVmSJGkvNDQ8967g0r14bkXTOZbbJUmSpLnBoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqcCgLEmSJBUYlCVJkqQCg7IkSZJUYFCWJEmSCgzKkiRJUoFBWZIkSSowKEuSJEkF3e0uQPPDfVf1sIit7MsAsWqs3eVsN17PokXDbO1tb137MkDv0i7Wt7UKSZLULAZlzcgitrL+51ey5IAVrL9tU7vL2W68nt7FPWwZGm57LUsPemBba5AkSc3j0AtJkiSpwKAsSZIkFRiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQVGJQlSZKkAoOyJEmSVGBQliRJkgoMypIkSVKBQVmSJEkqMChLkiRJBQZlSZIkqcCgLEmSJBUYlCVJkqQCg7IkSZJUYFCWJEmSCgzKkiRJUoFBWZIkSSowKEuSJEkFBmVJkiSpoLuVK4+Iw4FPASuB9cAzMvPGVm5TkiRJaoZW9yifA3woMw8HPgSc2+LtSZIkSU3RsqAcEfcEjgYurCddCBwdEX2t2qYkSZLULK0cenEQ8NvM3AaQmdsi4tZ6ev809+0C6OzsaGF5lYnb6O7qZGlvT8u3O1NzpZ6eRWP0LltGd+9SepeNtruc7cbrWbyoB7qH215LV3cPvcuWtbWOcXO1rQB6FvWwtLd8fC9Z3M22kdbv83Pl2BrX3dW50+tRR1cXXYuX7PlaukfpXbZtt9fTrOOyu3cpXV2T9+t0dHXtkfeL7fXMg32n2fbk86vWamzLvXFfnqhhe12l+R1jY2Mt2XBEHAOcn5kPbpj2c+C0zPzxNHd/BPCdlhQmSZIk7eh44PKJE1vZo7wWuHdEdNW9yV3A6nr6dK6kKngdsPvdGpIkSdLOuoB7UWXPnbQsKGfm7RFxDXAqcEH9/9WZOd2wC4AhCqlekiRJarJfTTajZUMvACLigVSXh9sP2Eh1ebhs2QYlSZKkJmlpUJYkSZLmK3+ZT5IkSSowKEuSJEkFBmVJkiSpwKAsSZIkFRiUJUmSpIJW/uDInBURh1Ndtm4lsJ7qsnU3trcqjYuIlcCngfsDW4EbgedlZn9EHAecCywB1lD90uPt9f12aZ5aLyLeAJwJHJmZ19qO809E9ALvBf4S2AJ8PzOfO9Xr6a7OU2tFxOOBNwMd9b83Zua/2ZZzX0S8C3gycCj162k9veltZ7tW9tYe5XOAD2Xm4cCHqN54NXeMAe/IzMjMI6kuBH5WRHRS/XjNi+q2+zZwFsCuzlPrRcTRwHHAzfVt23F+egdVQD68Pi5fX0+f6vV0V+epRSKig6oj4vTMPAo4HfhUfXzZlnPfF4FHUr+eNmhF29mu7IVBOSLuCRwNXFhPuhA4OiL62leVGmXmhsy8rGHSFcAhwDHAlswc/9XGc4CT6793dZ5aKCIWU73AvqBhsu04z0TEcuAZwOszcwwgM2+b6vV0V+ftmUe01xsF9q3/vgewDliFbTnnZeblmbm2cVorjkPb9W57XVAGDgJ+m5nbAOr/b62na46pezleAHwZOJiGT9GZeQfQGRH778Y8tdabgAsyc03DNNtx/rk/1Vevb4iIH0XEZRHxCKZ+Pd3VeWqh+oPOycCXIuJmqh7KZ2BbzmetaDvbtbY3BmXNLx8EBoCz212IZici/gT4I+DD7a5Fu60LuB9wdWb+EfAq4N+A5W2tSrMWEd3Aa4AnZOYhwAnAxdiWUtHeGJTXAveOiC6A+v/V9XTNIfVJCw8AnpqZo8AtVEMwxuevAkYzc8NuzFPrPAo4ArgpItYA9wG+DhyG7Tjf3AKMUH8Nm5k/AO4A7mLy19OpXmt9HW6fo4DVmfldgPr/zVTjz23L+WlX28d2nYG9LijXZ8hfA5xaTzqVqpekv21FaScR8TaqMalPzMyhevJVwJL6K1+A5wOX7OY8tUhmnpWZqzPz0Mw8FPgN8FfAO7Ed55V6mMv/AI+B7WfD3xO4gUleT6d6rfV1uK1+A9wnIgIgIo4ADqC6utA12Jbzzq62j+06Mx1jY2PtrmGPi4gHUl3yZD9gI9UlT7K9VWlcRDwYuJbqTfiuevJNmfmkiPhTqjNve7n78mC31ffbpXnaM+pe5cfXl4ezHeeZiLgfcB7VpaKGgX/OzK9N9Xq6q/PUWhHxdODVVCf1AbwhM79oW859EfEB4ETgQKpvddZn5oNb0Xa2a2WvDMqSJEnSdPa6oReSJEnSTBiUJUmSpAKDsiRJklRgUJYkSZIKDMqSJElSgUFZkiRJKjAoS9IcEpVrImJTRLy0Seu8LiIe3Yx1SdLexOsoS9IcEhEfB/6Qmf/U7lokaW9nj7IkzS2HANe1uwhJkj3KkjRnRMQ3gUdR/UT0CHB0Zt5QWO6TwCBwX+B44CfAk6l+lvjvgduAUzPz6nr5NcCzM/MbEXEm8CBgC/Ak4Bbg7zPzR618bJI0H9mjLElzRGb+OfAd4MWZubwUkhucDLwOWAUMAd8HflzfvhR4zxT3/TvgIuAewJeBs3e7eElagAzKkjQ/fSEzr8rMLcAXgC2ZeX5mbgM+Bzxsivtenpn/Xi/7aeChe6BeSZp3DMqSND/d1vD3XYXby6e47+8a/h4EeiOiu4m1SdKCYFCWJEmSCgzKkiRJUoFBWZIkSSrw8nCSJElSgT3KkiRJUoFnOUvSHBQR11H9St9Ez8vMz+zpeiRpb+TQC0mSJKnAoReSJElSgUFZkiRJKjAoS5IkSQUGZUmSJKnAoCxJkiQV/H9YlwLbpC3E1wAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plot_feature_distribution(train_data, 'f_min', 'songtype_id', \"Maximum frequency distribution, TP data, grouped by species id\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n 2021-02-02T12:43:28.553548\n image/svg+xml\n \n \n Matplotlib v3.3.3, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAGJCAYAAACerGVYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAq0klEQVR4nO3de5xkdX3n/1ffZnpucplpBkcRROQTVB4iSmT3IeruRhOzYZMgElAwamLiPfzcGC/RFeNl0XjFG2gkiigKuhKT3+Zn4hpUvBIEXUA/ojA4yDgMMwPOTDM9ffv9cU5DTU/3t6u7q7q6Z17Px2Me03XOqXM+9a1Tdd71re851TU+Po4kSZKkqXV3ugBJkiRpMTMwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVGBglmYhInZFxLGdrmOyiFgREf8YEfdFxFWdrqfTIuLpEXFnw+2bI+LpLVr38yLiXxpuj0fEca1Yd72+RbmPNSsiLoiIyztdx1IyeX+dYn5L97GFEhFviIi/W8h1RsTGiPitVm5TAujtdAFSq0TERmADsCEz72mYfgNwEvDIzNw4n21k5ur53L+NzgTWA2szc6TTxSw2mfnYmZaJiGOA24G+Uhtm5meAz7Siroi4Brg8Mx8IAO3exyLiNOCf65tdwEpgd8MijwEuA04FRoA9wDeAl2fm5hbX8kngzsx8YyvXq8UhM9+xFNYpNcMeZh1obgfOmbgRESdSBYID3dHAT6cLehHhh+MWOBDaMTO/mZmr62A+8UHi0IlpmfmLetor6mWOBw4F3teBctvmQHguJS0c3zB0oPk08Hzgg/XtP6bqLXvbxAIR8V/r248C7gM+kZkX1PP+CLgQeHxm/joingX8PXBiZm6NiHHg0Zn5s7p3bBB4JHAa8EPg2cDr6u1uAc7JzBvqdT9w3/r2J6l71+rhApcDFwF/CYwCLwX2Au8H1gHvnqp3JSLeArwe6IqIPwD+or7/i4Hv1+3x0Yh4K/B24CxgOfAl4P/JzPvr9bwGeDUwDrwR+ETDY72Ghp7QiHgB8KeZ+ZT69m/Ubf5EYCvwpsy8suFx7gaOAZ4K3AI8NzN/Xs9/bP0YnwgMAx8ALgVuA47KzG31cicDX6H6BmF4UhusAD4K/D6wuX7OGudvrOv9akT8JvARqiB4P/CZzHw1VS8qwL0RAfAMIKZox581Pvba70bE+cBD6m2/NjPHIuIC4LjMPLeu4xjqXmzgLVT7zakR8X7gk5n5ikn72CF1uz6Lal/7OPCOet0vAP4U+C7wJ8C9wMsyc6L3uCUyc3tEfJFqf9xPRDwS+CRwcl1LTpp/Vf04V1C9Rl6amTdHxJ8BzwPG67b7t8w8PSJeR9XmRwCbgL/OzC81U2tdy6eAJwDfq2s5JDPPbWj7PwXeDGysX3dvqLe3Avj/gFdm5n0Tr8nMfHjD+jfy4H50AfA4qtfa7wK3Ai/MzB/Wy26geu6eCuwC3peZF9XzivvrNPbbx6iO4b8CnpaZ/7de9xHARuDozNw6qX2Oo3pdn0T1Wvs/mflH9bxxqveOfbaRmWP1/BcBrwGOpHo9/Flm3lHP2+81nJnvmGL/PxV4L9W3GHcAf5GZ19TzXgD8D2AAuAd4Y/1tzj6mWOd5VO/nq+t1S21hD7MONN8FHhIRJ0RED3A2VRBttJsq/BwK/FfgpXXQJDM/D3wbuCgi1lIdXP508oGnwVlU4XIdMAR8B/hBffsLzO4N/EigH3gY1YHj48C5VAeh04A31YFgH5n5ZuAdwOfrHsJP1LOeTBU611MF5QupQuJJwHEN2yEifocqqD8DeDTQ9BjAiFgF/CvwWaqQczbwkYh4TMNiZ1MFxMOAn9X1EBFrgK9SBZUNdV3/JzN/BVxD1b4TzgM+Nzks195M9QHoUcBvU31gmc4HqA7oD6mXv7Ke/tT6/4ne1u/Utye341T+EHgSVWj8feBFhe0DkJl/DXyTuic3M18xxWIfBA4BjgWeRrXfvrBh/pOpQuE64F3AJyKia6Ztz0ZErKP6IHjDNIt8Fri+ruGt7N/2/0y1Tx1B9dr4DEBmfqz++1314z+9Xv7nVPv7IVT7zOUR8dAmy/0sVZhbC1xAtc9M9jTgBKr95AX1v/9E1cargQ81uS2onuurgMPrbV8dEX0R0Q38I9UHhIcB/wU4PyJ+u77fbPbXCfvtY5m5F/gc1fvEhHOoXkNTvWe9FfgXqtfhw3mwY2HabQBExO9TfbA4gyrQfhO4op435Wt48oYj4mHA/0sVbg+ner/5YkQM1O8hFwHPysw1wH8EbpypQer3mI9SPc8bqJ73hxfvJM2RgVkHoole5mcAPwZ+2TgzM6/JzP+bmWOZ+SOqN/6nNSzycuA/UwW2f8zMfyps60uZeX1m7qHqsd2TmZdl5ijweaqermYNA2+vA+HnqALIBzJzZ2beTNUz+/hZrO+uzPxgPUxjD/BnVD3K2zNzJ1XIPrte9izg7zPzpszcTRU2mvV7wMbM/PvMHKl71L8IPKdhmS9l5vfrWj5DFdon7vurzHxPZu6pH+v36nmfog4C9Yefc6ie26mcRdV22zNzE9XBdzrDwHERsS4zd2Xmd2d4fA+040Rv/BTeWW/7F1Q9bedMs1zTGj7wvb5ul43Ae9g3BN6RmR+v97dPAQ+lCvatcFFE3EsV+jZTffswucZHAKdQfaMwlJnfoAqKD8jMS+v6h6j2q8fXPedTysyrMvOu+vX5eaqe29+cqdiGWv5HZu7NzGuBL0+x6AWZubt+Lp8HvDczb8vMXVTf1Jw9i+Ea12fmF+rX7HupPvCeWtcxkJl/U9dyG9UH4MbXW7P764Tp9rFPAec0fFA6j+lfJ8NUw7c21K+3a5vcxkuA/5mZP65fw+8AToqIoym/hhudC/zvzPzf9XP7r8C/U/XOA4wBj4uIFZm5uX7Pm8mZwD9l5jfq/etN9XqklnNIhg5En6b6ev2RVMMx9hERT6bqbX0csIxqeMIDV5bIzHvrr5FfTdWzVrKl4e/7p7g9mxO4ttXBZ+K+U61/Nuvb1PD3ANVY7uvr4QZQnfDVU/+9gaqXcMIds9jO0cCT63A1oZd9D9q/avh7kAcfx1FUPYpT+Qfg4rpXPYD7MvP70yy7gX0fb6n+PwH+BvhJRNwOvGWGD0WbCvOmWuaOup75Wkc1dKPxsdxB1WM54YF2zczB+rlt1UmDr8qGkxGnsQHYUX/IaqzxKHgg9L+d6sPTAA+GmXVUw6H2ExHPp3rtHVNPWl0vP5MNwPbMHGyYtmmilknTGu8zuX17af5DxwPrymqYzJ31OseBDZNeEz1UPbMT2212f52q7gf2scz8XkQMAk+PiM1UPbxTfVAA+CuqXubvR8QO4D2ZeelM26B6jX8gIt7TML+Lal8svYYbHQ08JyJOb5jWRzUUZ3c9HO4vqb4l+Rbw3zPzJzOsc592rNezrYlapFkzMOuAk5l31EHod6nC0WSfpfra9VmZuaceP/rAATkiTqL6KvIKqp6f32lRaYPsewLikcC0l5JqgfGGv++hCtyPzcxfTrHsZvYNFo+YNH83+9c+YRPw9cx8xhxq3MSDvW77qJ+bK6l6pn6D6XvN4MH6J3qlJtffuN5bqXrkuqm+Yv5CPfxmfJq7TDe90eRt31X/XWq3mdZ9Dw/2CN7SsO6pnr9O2QwcFhGrGkLzI3jwcT2X6qv936IaV3sIsIMqbMGkx1/3WH6cagjDdzJzNCJubFh+ploOj4iVDaF5clievM27qNp3wiOorgyyhSqMPfDc1eF/YNK6jmqY3001HOCueh23Z+ajC7U2tb9O2tZU+xg8+G3Mr4Av1N947ace6vTiut6nAF+NiG9kfV5FYRubqHrEpxpTfDTTvIYn2QR8OjNfPE1tXwG+Uo/vfhvVfnDaDOvcTDW8ZqKWlVTDMqSWMzDrQPUnwGF1j8Pk/XwNVU/UnvoEsOdSjesjIvqpxjy/gerEs3+PiJdl5kdaUNONwHMj4maq4SJPo/pKsu3q3q+PA++LiFdk5t31mMLH1QeqK4G/j4jLqILNm6eo/Yyorn+6gap9J3q//wm4sD755nP1tJOAXZn54xlK+yfgvfXJTB+l6vF/TMNXupfV/46gek6mcyXw+oj4HrAKeOV0C0bEucBXsjqJ89568hjVyYpjVGNZfzpD3ZO9pt72aqoTpybGrt8IvLYeLnAf1Vf+jbbU29tPHRavBN5e97oeTtXz+u5mCqpPjnp6Zj59Vo9kFuoPp/8OvCUi3kA1dOJ0HuzhXEM1tn8bVficfNLq5Me/iirQbgWIiBdSfRNEffsYqhP39rtEZEMtF0TEG6nG/p/OpCEik1xB9fz8c73NiXMBRiLip0B/VCcJ/wvV/rd80v2fGBFn1I/3VfVj/S7VfrQzIl5L9aF7L1WwW5GZ1zGL/bXBdPsYVO9ZPwR2MvW4bQAi4jlUH0TupPrgMs6+Qxim28bFwFsj4sasTtg8BHhmZl7FzK/hxhqvq8dxf5Wqd/lUqnMahuu/v0r1wX4XzQ2t+ALwvTr8f5/qmyOHmqot3LF0QMrMn2fmdGH0ZcDfRMROqpPermyY9z+BTZn50XpM3LnA2yJiup6i2fgLqgP4vVRjJ69uwTpn47VUB6fvRsSvqQ5OAZDVlRXeD3ytXuZrk+77PqqD/haq3qwHepqyGg/9TKpepruoerneyf7hYj/1fZ9B1S6/ohqv+p8a5n+L6sD5g6zPyJ/GW6i+Qr6dKtyUeqN/B7g5InZRnQB4dmbeX/dKvh34VkTcW5/R36x/oBrSciPViU2fqOv/V6qx7D+q508e+vEB4MyI2BERU41jfSVVL/VtwLVU345cOsVyUzkK+NYsHsNcPZfq5MPtVB+0GodBXUb1vPySqpd88njxTwCPqdv76sy8hWqc9neo9rUT2fcxHNWwvqk8D/gPVAH9bVRtP1So/VIeHMJ1O9VY/1cCZOZ9VO8Vf1dvbzf7fyP0D8AfUYXP84AzMnO4Hlr1e1QfHG+n+rbg76h62GF2+2vjtvbbx+paN1GdUDnOg8M+pnIKVcDcRRXy/6IeX13cRlZXKXkn8Ln6veMmqiu3zPganlTjxMmDW6l6nF9DlUO6qT4M3kW1Hz2Naa7KMmmdN1Odc/JZqt7mHbT3WzsdxLrGx5v5tlHSwSYmXQavg3V8DfhsE+Np1aAeyvBfsr4s34Gg7jnempmXNLn854GfZHUlmVbXcgENlzfrtIi4lOoE1Tn9CMxieb1Li5VDMiQtWhFxCg9e4kqzkJkndbqGVsvMt5Xm1/vLdqqe22dS7TcXLkBpHVUPVTmD2V2VR9IsOCRD0qIUEZ+iGjZyfv21rzSTI6kuB7mLauzwS7P+4aADVVQ/SHQT8LeZeXun65EOVA7JkCRJkgrsYZYkSZIKFusY5uVUZ/NuBkZnWFaSJEmaix6qX0m9jsJVdRZrYD6F8qVxJEmSpFY5jerynVNarIF5M8COHbsZG3OMdausXbuabdt2dbqMg5Jt3zm2fWfY7p1j23eObd85c2377u4uDjtsFdTZczqLNTCPAoyNjRuYW8z27BzbvnNs+86w3TvHtu8c275z5tn2xSHAnvQnSZIkFRiYJUmSpAIDsyRJklSwWMcwS5IkLRmjoyPcdttt7N492OlSDkp3393N2NhYcZne3mUcdtgAPT2zj78GZkmSpHnasWMrq1atYv36dXR1dXW6nINOb283IyPTB+bx8XF27/41O3ZsZd26h856/Q7JkCRJmqeRkb2sXn2IYXmR6urqYtWqhzAysndO9zcwS5IktYBheXGbz/PjkAxJkqQWGxmDoeGRlq93eV8vvU10d37oQ+/n61//Gps338Vll32OY489ruW1NFrGEAzvaf2K+/rZy/KmF7/00o9x6aUfa/ljNjBLkiS12NDwCNf9eEvL13vKCevpXT5zfDvttKfznOeczctf/uKW1zCl4T3s+tkNLV/t6uOeAH3NBebMn3DzzTdx5JGzH6M8E4dkSJIkHWAe//iTWL/+yE6XsWD27t3Le9/7Tv7yL1/XlvUbmCVJkrSkfexjH+WZz3wWD33ohras38AsSZKkJeumm37ET35yC2ec8Zy2bcPALEmSpCXrhht+wMaNt/Oc5/w3zjzzdLZuvZtXv/qVfP/7323ZNjzpT9KCa9fZ41MZ3z7I4NDct9XsGemSpM4477wX8MIXvuiBHy4588zTede73udVMiQtbe06e3wqa1b3s3PX3C911OwZ6ZK0mLz//X/L17/+b2zfvo3zz385D3nIIVx++ZWdLmvJ8iggSZLUYsv7ejnlhPVtWW8zzj//NZx//mtavv1p9fVXl4Brw3pn6wtf+MeWl2FgliRJarHebg6qb6f2srzp6yUvRY7MkyRJkgoMzJIkSVKBgVmSJKkFxsfHO12CCubz/BiYJUmS5qm3dxk7d95naF6kxsfH2b371/T2LpvT/Q+e0eiSJEltcthhAwwO7mDLlh2dLuWg1N3dzdjYWHGZ3t5lHHbYwJzWb2CWJEmap56eXo499li2bt3Z6VIOSgMDa9ra9g7JkCRJkgoMzJIkSVKBgVmSJEkqMDBLkiRJBQZmSZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVNA70wIRsRb4NPAoYC9wK/Dnmbk1Ik4FLgFWABuBczPz7vp+086TJEmSlooZAzMwDrwrM68BiIi/BS6MiBcDlwMvyMxrI+KNwIXAiyKie7p57XgQUjuMjMHQ8EhL1jW+fZDBodasayrL+3rp9fsiSZLaYsbAnJnbgWsaJn0XeCnwRGBPZl5bT7+Yqif5RTPMk5aEoeERrvvxlpasa83qfnbu2tOSdU3llBPW07u8mc+/kiRptmbVJ1X3HL8U+DLwCOCOiXmZeQ/QHRGHzzBPkiRJWjJm2yX1QWAX8CHgD1tfzr7Wrl3d7k0cdAYG1nS6hCVjfPsga1b3t2x9rVzXZCtXLmfg8JVtW3+rtbptZzKfbS21tl1MfL/pHNu+c2z7zmln2zcdmCPi3cCjgdMzcywifgEc3TB/HTCWmdtL82ZT3LZtuxgbG5/NXVQwMLCGrVt3drqMJWNwaKRlwyjaPSRjcHCIraOjbVt/q7WybWcy37Zfam27WPh+0zm2fefY9p0z17bv7u5qqoO2qSEZEfEOqnHJf5CZQ/Xk64EVEfGU+vZLgKuamCdJkiQtGc1cVu6xwOuBnwLfjgiA2zPzDyPiPOCSiOinvnQcQN0DPeU8SZIkaSlp5ioZNwNd08z7NnDibOdJkiRJS4VXbpUkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVGBgliRJkgoMzJIkSVLBjD+NLbXKyBgMDY90uoymjY13ugJJkrQYGJi1YIaGR7jux1s6XUbTHn/8QKdLkCRJi4BDMiRJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVGBgliRJkgoMzJIkSVKBgVmSJEkqMDBLkiRJBQZmSZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVGBgliRJkgoMzJIkSVKBgVmSJEkqMDBLkiRJBQZmSZIkqaC3mYUi4t3As4FjgBMz86Z6+kZgT/0P4LWZ+ZV63qnAJcAKYCNwbmbe3cLaJUmSpLZrtof5auCpwB1TzDszM0+q/02E5W7gcuDlmXk88A3gwhbUK0mSJC2opgJzZl6bmZtmsd4nAnsy89r69sXAWbMtTpIkSeq0Voxh/kxE/CgiPhIRh9bTHkFDb3Rm3gN0R8ThLdieJEmStGCaGsNccFpmboqI5cD7gQ8B5867qtratatbtSrVBgbWdGzb49sHWbO6v2Pbn62+vt6W1tvOx75y5XIGDl/ZtvW32kLvC/PZ1lJr28Wkk+83BzvbvnNs+85pZ9vPKzBPDNPIzKGI+Ajw5XrWL4CjJ5aLiHXAWGZun836t23bxdjY+HxKVIOBgTVs3bqzY9sfHBph5649My+4SAwPt67eNav72/rYBweH2Do62rb1t9pC7gvzbful1raLRaffbw5mtn3n2PadM9e27+7uaqqDds5DMiJiVUQcUv/dBZwN3FjPvh5YERFPqW+/BLhqrtuSJEmSOqXZy8pdBJwBHAl8NSK2AacDX4yIHqAHuAV4GUBmjkXEecAlEdFPfVm51pcvSZIktVdTgTkzXwW8aopZTyjc59vAiXOsS5IkSVoU/KU/SZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVGBgliRJkgoMzJIkSVKBgVmSJEkqMDBLkiRJBQZmSZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVGBgliRJkgoMzJIkSVKBgVmSJEkqMDBLkiRJBQZmSZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpILemRaIiHcDzwaOAU7MzJvq6ccDnwLWAtuA52fmrTPNkyRJkpaSZnqYrwaeCtwxafrFwIcz83jgw8AlTc6TJEmSlowZA3NmXpuZmxqnRcQRwMnAFfWkK4CTI2KgNK91ZUuSJEkLY8YhGdM4CvhlZo4CZOZoRNxVT+8qzNvagpolSdIBYmQMhoZHOl1G05b39dLrGWAHnbkG5gWxdu3qBd/mzsG93L9n6bxwV/T3smblsqaXHxhY08Zqysa3D7JmdX/Htj9bfX29La23nY995crlDBy+sm3rb7WF3hfms62l1raLSSffbw52S6nt794+yE9u29bpMpp2chxRfE9YSm1/oGln2881MG8CHhYRPXUPcg+woZ7eVZg3K9u27WJsbHyOJc7N7qERrvvxlgXd5nyccsJ69uweamrZgYE1bN26s80VTW9waISdu/Z0bPuzNTzcunrXrO5v62MfHBxi6+ho29bfagu5L8y37Zda2y4WnX6/OZgNDKxh85adS6bXdmycJXVsKL0nuN93zlzbvru7q6kO2jkF5sy8OyJuBM4BLq//vyEztwKU5kmSpPYaGl46nT+PP95TnLT4zTgKJyIuiog7gYcDX42Im+tZLwFeGRE/BV5Z36aJeZIkSdKSMWMPc2a+CnjVFNN/Ajx5mvtMO0+SJElaSjzPU5IkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVGBgliRJkgoMzJIkSVKBgVmSJEkqMDBLkiRJBQZmSZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklTQ2+kCpAPVI9f1sYy9ACxbNsze/vG2bWv1+E76hpfO59+u8TFiXfvao9F8277Ytn397GX5nNctSVoaDMxSmyxjL9tuuQ6A/uV97Bkabtu21jz0ISzr7Wnb+ltt78go2zb/ekG2Nd+2L7Xt6uOeAH0GZkk60C2dLilJkiSpAwzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVNDb6QIktUBXF3tHRjtdRdPGxztdgSRJzTMwSweAkdEx7tyys9NlNO3h69d0ugRJkprmkAxJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKlg3r/0FxEbgT31P4DXZuZXIuJU4BJgBbARODcz757v9iRJkqSF1Kqfxj4zM2+auBER3cDlwAsy89qIeCNwIfCiFm1PkiRJWhDtGpLxRGBPZl5b374YOKtN25IkSZLaplWB+TMR8aOI+EhEHAo8ArhjYmZm3gN0R8ThLdqeJEmStCBaMSTjtMzcFBHLgfcDHwK+1IL1snbt6lasZlbGtw+yZnX/gm93rlauXM7A4SubXn5gYE0bqylbam3b19c7r3qXLRumf3nfA7cb/261np7utq6/1Ra63vlsa9myXtasXDblvBUrl3HIoZ17TS12nXy/aaXR+3cxNjTY6TKaNnzv/RzaO8KJG3o6XUpTDusZ7Hitw13L+OV9400tO9Nx90DZ75eidrb9vANzZm6q/x+KiI8AXwY+ABw9sUxErAPGMnP7bNa9bdsuxsaa24FbZXBohJ279sy84CIxODjE1tHRppYdGFjD1q0721zR9JZa2w4Pz6/evf3j7BkaBqrANvF3O4yOjrV1/a22kPXOt+337h1h5zTvQ+ODe9k73LnX1GLW6febVlo2fB+7fnZDp8to2prVy9lx7yCbN/+606U0pWf9GjZv6ey+svYxp7BzV1dTy5aOuwfSfr/UzLXtu7u7muqgndeQjIhYFRGH1H93AWcDNwLXAysi4in1oi8BrprPtiRJkqROmG8P83rgixHRA/QAtwAvy8yxiDgPuCQi+qkvKzfPbUmSJEkLbl6BOTNvA54wzbxvAyfOZ/2SJElSp/lLf5IkSVKBgVmSJEkqMDBLkiRJBa36aWxJkiQtIiNjMDQ80ukymra8r5feRdqVa2CWJEk6AA0Nj3Ddj7d0uoymnXLCenqXL85oukhzvCRJkrQ4GJglSZKkAgOzJEmSVGBgliRJkgoW58hqSdIBb6mcwd81PsbYOHR3dboSSZ1iYJYkdcRSOYM/1o2zZnSUZb09nS5FUoc4JEOSJEkqMDBLkiRJBQZmSZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpAIDsyRJklRgYJYkSZIKDMySJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAwCxJkiQVGJglSZKkAgOzJEmSVGBgliRJkgoMzJIkSVKBgVmSJEkqMDBLkiRJBQZmSZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUoGBWZIkSSro7XQBkrSodXWxd2R0ylnDo2PsHhtZ4ILKlvf10mtXiCS1lIFZkgpGRse4c8vOKeetPWw3ec/gAldUdsoJ6+ld7lu7JLWS/RCSJElSgYFZkiRJKjAwS5IkSQUGZkmSJKnAM0Mk6QDS1d3F7qHOX7ljfPsggzPUMTa+QMVI0jwZmCXpADI0PMoPf7q102WwZnU/O3ftKS7z+OMHFqgaSZofh2RIkiRJBQZmSZIkqcDALEmSJBUYmCVJkqQCA7MkSZJUYGCWJEmSCrysnCTN0aGr+wiGO13GPg5hF7Gu8xc4XrZsmL395ToWS60zOXRlD6M7Ol2FpE5qa2COiOOBTwFrgW3A8zPz1nZuU5IWSs/YMNtuua7TZexjxfo1bNuys9Nl0L+8jz1D5Q8Ti6XWmax90imMdroISR3V7iEZFwMfzszjgQ8Dl7R5e5IkSVJLtS0wR8QRwMnAFfWkK4CTI8KfdpIkSdKS0c4hGUcBv8zMUYDMHI2Iu+rpM/1uaw9Ad3dXG8ubWm9PNyv7+xZ8u3PV29M9q3bqRJtOWIptO596+5aN079qFQDLl/VBb/vGuvb2r6R/1Vjb1t9qC1nvfNu+VGtPb98Dz/FisVj2hWbafbHUOpOe3j56+1fS07M0zpPvWraM3n7oX7U0BpIshv2gb1kfK/ubOz7OdNzt5HF2sqV43J1P+83lvg336Skt1zU+3p4TLiLiicBlmfnYhmm3AOdm5g9muPtTgG+2pTBJkiRpX6cB1043s509zJuAh0VET9273ANsqKfP5DqqwjeD51pIkiSpLXqAh1Jlz2m1LTBn5t0RcSNwDnB5/f8NmTnTcAyAIQopX5IkSWqRn8+0QNuGZABExG9QXVbuMGAH1WXlsm0blCRJklqsrYFZkiRJWuqWxim/kiRJUocYmCVJkqQCA7MkSZJUYGCWJEmSCgzMkiRJUkE7f7hEbRQRa4FPA48C9gK3An+emVsj4lTgEmAFsJHq1xXvru83p3naX0S8GbgAODEzb7Ld2y8i+oH3Ab8F7AG+k5l/FhHHU13Cci2wjeoSlrfW95nTPO0rIn4PeCvQVf97S2b+L9u+9SLi3cCzgWOo31/q6S1va5+HfU3V9qXjbX0f3/vnabp9vmH+PsfbetqCtrs9zEvXOPCuzIzMPJHqotsXRkQ31Q/FvDwzjwe+AVwIMNd52l9EnAycCtxR37bdF8a7qILy8fV+/6Z6+sXAh+s2/DDVmyHznKdaRHRRBYbzMvMk4DzgU/X+a9u33tXAU6nfXxq0o619HvZ1Nfu3/ZTHW/C9v4WuZup9fr/jbT1twdvdwLxEZeb2zLymYdJ3gaOBJwJ7MnPilxIvBs6q/57rPDWIiOVUB5aXNky23dssIlYDzwfelJnjAJm5JSKOAE4GrqgXvQI4OSIG5jpvYR7RkjMGHFL/fSiwGViHbd9ymXltZm5qnNaO/dznYX9TtX3heAu+97fEVO0O0x5voQPtbmA+ANSfmF4KfBl4BA2fwjLzHqA7Ig6fxzzt62+AyzNzY8M02739HkX1lfGbI+LfI+KaiHgKcBTwy8wcBaj/v6uePtd5alB/QDkL+IeIuIOqN+j52PYLqR1t7fMwS5OOt+B7f7tNdbyFDrS7gfnA8EFgF/ChThdyoIuI/wA8CfhIp2s5CPUAxwI3ZOaTgNcC/wtY3dGqDgIR0Qu8Hvj9zDwaOB24EtteBx+PtwtksR1vDcxLXD1Q/tHAH2XmGPALHvyqiIhYB4xl5vZ5zNODngacANweERuBhwNfAY7Ddm+3XwAj1F8fZ+b3gHuA+4GHRUQPQP3/BmBT/W8u87Svk4ANmfktgPr/3VTjyW37hTHX9vR5aJEpjrfgMbedpjzeRsQz6UC7G5iXsIh4B9V4nD/IzKF68vXAivqraoCXAFfNc55qmXlhZm7IzGMy8xjgTuC3gb/Fdm+r+quzfwOeAQ+c3X8E8FPgRuCcetFzqHqht9ZnPs96XtsfzNJzJ/DwiAiAiDgBWE91tYAbse3bbq7t6fPQGtMcb8FjbttMd7zNzH+hA+3eNT4+Pq8HpM6IiMcCN1GFhfvrybdn5h9GxH+kOtO5nwcvmbKlvt+c5mlq9afe38vq0kO2e5tFxLHApVSXwBoG/joz/zkifoPq0liHATuoLo2V9X3mNE/7iojnAa+jOvkP4M2ZebVt33oRcRFwBnAk1bco2zLzse1oa5+HfU3V9lTj96c83tb38b1/nqbb5ycts5H6eFvfXtB2NzBLkiRJBQ7JkCRJkgoMzJIkSVKBgVmSJEkqMDBLkiRJBQZmSZIkqcDALEmSJBX0droASRLUPwryeeBRVNeXvqjDJUmSagZmSVoc/gr4t8w8qdOFSJL25ZAMSVocjgZu7nQRkqT9+Ut/ktRhEfE14GlUP/c9ApycmT+dYrlPAoPAI4HTgB8Cz6b6yeo/BrYA52TmDfXyrwNeDBwBbKIa6vGlet5HgSMy89n17XcCTwJ+KzM9MEhSA3uYJanDMvM/A98EXpGZq6cKyw3OAt4IrAOGgO8AP6hvfwF4b8OyP6cK1ocAbwEuj4iH1vP+O3BiRLwgIk4D/gT4Y8OyJO3PwCxJS8uXMvP6zNwDfAnYk5mXZeYo1UmDT5hYMDOvysy7MnMsMz8P3Ar8Zj1vEDiPKmBfDrwyM+9c6AcjSUuBJ/1J0tKypeHv+6e4vXriRkQ8H3g1cEw9aTVVTzQAmfm9iLiNasjGlW2qV5KWPHuYJekAFBFHAx8HXgGszcxDgZuAroZlXg4sB+6iukqHJGkKBmZJOjCtAsaBrQAR8ULgcRMzI+J44G3AuVRDM/4qIk5a+DIlafEzMEvSASgzbwHeQ3VS4BbgROBbABHRSzVu+Z2Z+cPMvBV4A/DpiFjeoZIladHysnKSJElSgT3MkiRJUoFXyZCkRSQibqb61b/J/jwzP7PQ9UiSHJIhSZIkFTkkQ5IkSSowMEuSJEkFBmZJkiSpwMAsSZIkFRiYJUmSpIL/H8++aF/67Xv6AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plot_feature_distribution(train_data, 'f_max', 'songtype_id', \"Maximum frequency distribution, TP data, grouped by species id\")" + ] + }, + { + "source": [ + "## Grouping the Dataset based on record_id " + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "files = train_data.recording_id.unique().tolist()\n", + "tr_gr = train_data.groupby(['recording_id'])" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "#Label Generation\n", + "bird_dict={}\n", + "for f in files:\n", + " lbls = np.zeros(24)\n", + " temp = tr_gr.get_group(f)\n", + " sps = temp.species_id.unique()\n", + " for i in sps:\n", + " lbls[i] = 1\n", + " bird_dict[f] = lbls" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1132" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "len(bird_dict)" + ] + } + ] +} \ No newline at end of file diff --git a/README.md b/README.md index fae084a..8a31443 100644 --- a/README.md +++ b/README.md @@ -1 +1,34 @@ -# MacaW \ No newline at end of file +# MacaW + +## Rainforest Connection Species Sound Classification + +--- + +**NOTE** + +This repo is under continious updates, so the pyscripts are being changed continiously. Have a clone if you need + +--- + +### Dataset + +The dataset has been provided with this kaggle competitions with guidelines to be followed. +If you want to use this dataset, please refer kaggle forums, adher to the rules and regulations listed there. + +### Exploratory Data Analysis + +I have carried out the EDA part of this project using Tableau and the link to the vizs HERE. + +If you want the insights and reports from these ongoing EDA, KIT with my GOOGLE DOC + + +### Models + +All my models have been constructed by refering to the PANN research paper. + + + + +- [x] Preprocessing Scripts +- [x] Model Construction +- [x] Training Pipeline diff --git a/RFCX_kfold.csv b/RFCX_kfold.csv new file mode 100644 index 0000000..7b1e5c5 --- /dev/null +++ b/RFCX_kfold.csv @@ -0,0 +1,1133 @@ +recording_id,species_0,species_1,species_2,species_3,species_4,species_5,species_6,species_7,species_8,species_9,species_10,species_11,species_12,species_13,species_14,species_15,species_16,species_17,species_18,species_19,species_20,species_21,species_22,species_23,kfold,dur_sample,t_min,t_max,duration +003bec244,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,44.544,45.1307,6 +006ab765f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,39.9615,46.0452,12 +007f87ba2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,39.136,42.272,9 +0099c367b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,51.4206,55.1996,9 +009b760e6,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,50.0854,52.5293,8 +00b404881,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,0.0747,4.1973,10 +00d442df7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,19.3653,20.16,6 +011f25080,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,5.6853,6.3787,6 +015113cad,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,50.0533,53.3973,9 +0151b7d20,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,46.032,46.928,6 +01b41f92b,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,44.24,46.384,8 +0201197ec,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,43.3575,45.8014,8 +0209f7ab2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,50.7573,53.8987,9 +0268057eb,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,25.4987,26.2933,6 +0275e127d,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,11.9989,13.1367,7 +0295e3234,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,5.1606,6.2984,7 +0297d886e,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,57.808,58.432,6 +02b9a8ab9,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,33.9093,37.0453,9 +0313e82cf,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,21.472,23.3067,7 +03b96f209,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,30.9333,51.4667,26 +03d77fede,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,44.4107,45.2053,6 +043356ff8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,0.1227,0.816,6 +04975ecd8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,54.384,55.936,7 +04d6b1fc1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,4.7307,7.3387,8 +04e70a8e3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,23.5947,26.736,9 +0509303a5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,23.7013,25.8453,8 +050d0ca85,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,49.92,50.6613,6 +053aeb7bd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,0.952,17.7807,22 +055088446,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,58.992,59.264,6 +055d22517,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,47.5835,50.0274,8 +057802c25,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,4.2202,5.358,7 +05b9c974c,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,31.984,33.76,7 +05f8c0f2f,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,26.5867,28.4427,7 +067f49f8b,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,53.296,54.0907,6 +068f1b8e2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,22.864,26,9 +06a0c48c9,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,57.2213,58.016,6 +06c44d203,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,1.28,2.0213,6 +073e4d908,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,12.496,15.632,9 +078788674,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,41.36,44.704,9 +07d1687e0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,0.064,4.1867,10 +07dcf40f7,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,27.237,29.6809,8 +07f1227b0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,32.9387,33.8347,6 +08db743d0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,38.3787,40.2133,7 +090ae427d,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,26.1387,29.28,9 +09315d9bf,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,49.696,51.3013,7 +0968aea09,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,5.7707,8.9067,9 +09a946316,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,50.4744,56.558,12 +0a350d11c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,60,11.5253,13.0773,7 +0a9cdd8a5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,22.2827,25.424,9 +0ab6aa734,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,49.4773,53.04,9 +0b2fa3f80,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,3.0133,6.1493,9 +0b3ef9c4e,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,44.3733,46.5173,8 +0c2124550,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,18.2293,19.3227,7 +0c448e77c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,36.2638,40.0428,9 +0c48ed342,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,50.032,56.4853,12 +0c936a1d4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,48.2453,50.8533,8 +0cb4632d6,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,47.1467,47.7707,6 +0d25045a9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,47.2693,48.1653,6 +0e034f968,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,1.8933,3.6693,7 +0e29d05ed,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,31.936,35.28,9 +0e2e4ac19,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,44.56,46.336,7 +0e799da44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,24.6027,25.296,6 +0ea8ea68a,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,3.8027,4.5973,6 +0eb2079ea,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,5.5893,6.3307,6 +0f8cadb4a,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,34.4907,35.1147,6 +0f99800b7,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,27.417,28.5547,7 +0fc62dd3c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,9.6427,10.336,6 +100e4ddc9,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,1.2853,3.0613,7 +103db6411,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,22.3573,27.7387,11 +10dae79ed,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,30.192,30.8853,6 +119b154cc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,3.7813,7.1253,9 +11a52d37a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,46.0693,46.7627,6 +11bafff5d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,22.6278,28.7115,12 +11c2c02e5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,14.8427,21.0027,12 +1263c23c8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,38.9013,45.3547,12 +12a12f0fa,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,31.504,35.6267,10 +12ec1d4cb,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,24.112,26.9173,8 +133001416,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,14.88,15.6213,6 +13511f7bd,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,8.256,9.152,6 +1375a05d1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,28.1493,29.2427,7 +1383208d3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,50.4744,52.9183,8 +13c678c1d,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,0.864,1.76,6 +13de5cabb,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,57.3359,58.4737,7 +13f64f898,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,35.4613,36.3573,6 +1414bbe17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,14.6453,14.9173,6 +141675c80,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,54.6933,55.5893,6 +147b41b13,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,35.4133,38.5547,9 +14948ff80,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,44.5013,45.1253,6 +14d467153,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,0.3733,4.496,10 +14dc5a39e,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,50.5067,51.1307,6 +14f6cbe5c,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,53.6,54.3413,6 +1504619b7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,44.512,45.2053,6 +1520a52ef,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,6.496,7.12,6 +1535d0c9b,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,4.6507,8.2133,9 +1545e29b3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,60,0.1387,1.6907,7 +156b77dfe,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,37.36,38.256,6 +157a50231,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,35.7867,36.5813,6 +158c5acb6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,60,18.8427,20.6773,7 +15d9e6d8b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,36.6453,37.3387,6 +160add406,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,3.0534,26.6043,29 +160b70831,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,1.9413,3.7173,7 +163e86660,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,58.064,58.8053,6 +16553d5cd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,28.7405,49.6327,26 +1679e323d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,8.6773,9.264,6 +16ccddf71,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,51.8773,52.8,6 +16fc37168,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,29.36,30.256,6 +16ffcf223,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,16.9973,17.92,6 +1702d35a0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,28.2453,29.8507,7 +178b835e3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,3,60,4.256,40.0853,41 +1795728ba,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,39.568,41.92,8 +17ca62c97,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,32.9173,34.7733,7 +17ca96791,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,60,13.632,15.4667,7 +180ba3012,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,48.352,50.496,8 +184322f0e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,60,54.8,56.4053,7 +1856bb5c2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,36.4533,38.0587,7 +18c47b7f2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,32.544,36.6667,10 +18df43462,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,46.8373,49.1893,8 +18e249f36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,28.8747,32.016,9 +19442bf58,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,1.4933,4.6293,9 +195e5ba43,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,60,25.184,26.736,7 +19dfeda02,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,16.0693,18.2133,8 +1a3993962,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,48.144,49.9787,7 +1a5fb3223,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,56.7893,59.9307,9 +1aa00dc63,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,60,19.7867,49.1566,35 +1aef4f8ff,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,47.152,47.7387,6 +1b77382c7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,32.1493,32.4213,6 +1ba9ee79a,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,5.9467,6.8427,6 +1bc8c196e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,60,4.5973,6.2027,7 +1bd29a4bb,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,42.7886,45.2325,8 +1c46aa776,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,30.7307,32.8747,8 +1ca8c8af6,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,0.6827,3.8187,9 +1d6371ff5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,40.5493,42.6933,8 +1d76cb226,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,49.712,50.8053,7 +1d949c49d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,33.6427,36.9867,9 +1e05620be,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,38.4587,41.5947,9 +1e0e340e1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,44.0533,46.1973,8 +1e469c124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,28.1493,31.4933,9 +1eb2a9113,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,28.4693,31.6107,9 +1ef3e2282,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,60,24.4587,26.2933,7 +1f0fe1c7e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,30.3733,31.9787,7 +1f2260885,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,7.0531,8.1908,7 +1f5dd26db,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,6.0907,10.2133,10 +1fb41e1c4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,13.872,14.5653,6 +1fb94ae60,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,48.2453,50.0213,7 +1fbc39373,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,34.3947,36.2293,7 +1fd650183,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,35.136,36.992,7 +1ffa43aae,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,29.7067,30.3307,6 +200656f13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,35.1086,43.0324,13 +2026bced7,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,49.8987,53.0347,9 +20801bb7d,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,1.9093,3.7653,7 +20be88a43,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,12.9653,14.9867,8 +20de9e491,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,60,54.464,57.808,9 +2105bda77,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,49.0812,50.219,7 +215bb7a8d,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,41.0006,42.1384,7 +21c9f1ba3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,11.8347,15.9573,10 +21e2f2977,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,22.384,29.6747,13 +22050fe3f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,60,56.624,58.176,7 +226ce47d9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,36.9371,43.0208,12 +22a2faf44,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,19.232,19.856,6 +22b46c334,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,12.7787,16.9013,10 +22bfc5978,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,46.6187,48.9707,8 +22da462f9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,8.816,9.712,6 +22eaad9ca,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,60,52.4,54.0053,7 +2319eb4b4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,25.632,26.3253,6 +2322ec1d3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,59.2533,59.9947,6 +23363116f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,8.3998,14.4834,12 +2337c4af2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,14.272,15.8773,7 +2393b59e0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,31.4688,37.5525,12 +23adb9473,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,60,51.504,54.944,9 +247aeccaf,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,19.7227,23.2853,9 +247d81f2b,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,29.696,30.592,6 +24aac801a,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,46.4,47.296,6 +251569711,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,18.2133,20.0693,7 +251737ef0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,35.9307,36.7253,6 +25218b040,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,6.2827,10.4053,10 +25c229018,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,6.5013,8.6453,8 +25de8315e,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,52.5387,53.4347,6 +266e8b635,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,42.8427,44.9867,8 +2695a2878,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,45.3486,51.4322,12 +2717a930e,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,14.176,18.2987,10 +275a0fc0c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,35.4667,38.8107,9 +27b26fe5d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,60,55.104,56.656,7 +27c146a88,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,26.7733,29.3067,8 +27c78408d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,14.128,15.68,7 +281865590,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,48.0587,48.8533,6 +287bf77ec,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,8.832,13.9573,11 +288e5d13f,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,14.3893,15.1307,6 +28d37d1de,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,35.8347,37.44,7 +28fd95f7f,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,24.8802,26.018,7 +29127020a,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,25.12,25.8613,6 +295f49a04,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,38.0401,40.484,8 +29b82a129,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,60,48.9333,50.4853,7 +2a1bb0557,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,3.696,3.968,6 +2a3c1f921,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,46.8587,47.6533,6 +2a69408f6,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,41.376,43.728,8 +2a7ed55d4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,7.3013,9.6533,8 +2a94d4b86,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,24.1488,30.2324,12 +2b9c8d234,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,37.5413,41.664,10 +2bb539997,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,26.0907,29.232,9 +2bcddf9a5,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,16.4693,21.7173,11 +2bf32cf03,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,21.0347,25.1573,10 +2c2127b9e,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,9.808,12.16,8 +2c6ba715f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,43.696,44.7893,7 +2c97a8020,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,44.9547,51.408,12 +2cd094d21,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,51.2107,54.3467,9 +2cd09cfab,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,57.3939,58.5317,7 +2ce34e1b6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,55.296,57.1307,7 +2cf89ef6b,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,24,24.896,6 +2d09eb065,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,60,7.008,47.1147,46 +2d50db2b1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,0.8707,2.0085,7 +2dacf9479,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,48.688,49.7813,7 +2dc763e67,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,6.2987,27.9253,27 +2df1f109b,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,8.0267,8.6507,6 +2e40b2294,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,56.7307,58.0213,7 +2e6758f3e,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,51.4507,54.256,8 +2e698aba5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,4.0229,11.9467,13 +2e7bc0749,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,60,23.9093,25.5147,7 +2eb098e76,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,20.8693,29.296,14 +2ec1b3167,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,56.9973,57.6213,6 +2ed5af143,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,57.792,59.648,7 +2ef429016,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,38.7787,40.6347,7 +2f40810b2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,60,45.9573,47.792,7 +2f594b20f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,40.0427,43.3867,9 +2fc2eca0c,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,52.9333,55.7387,8 +2febbdfc5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,15.4613,18.8053,9 +2ffaa6c02,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,60,53.3173,56.6613,9 +304141997,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,40.0693,40.9653,6 +304b4b5fd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,0.9013,1.9947,7 +3051fc9d0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,38.0693,41.4133,9 +305ff00d1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,49.856,50.128,6 +306f98294,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,60,10.2933,11.8453,7 +30cd416ed,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,46.6773,47.3013,6 +31259d9d5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,24.496,25.7867,7 +321c09a90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,60,56.1333,59.5733,9 +32278292a,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,27.3067,28.048,6 +3296a3827,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,55.328,57.3493,8 +3346f84ee,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,36.0548,37.1926,7 +33d0f2685,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,37.936,57.8187,25 +340c7f964,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,53.8347,57.1787,9 +34340b225,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,15.865,42.224,32 +3458e20b8,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,10.4432,12.8871,8 +349095631,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,16.2293,29.2267,18 +3508bf762,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,17.8027,19.408,7 +3513db2b8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,23.8827,24.976,7 +352056163,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,32.8587,33.4827,6 +352bc8d36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,2.256,3.3493,7 +35675af70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,53.1389,59.2225,12 +356b93991,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,7.4667,8.16,6 +35844fa7f,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,20.4,22.544,8 +35a7c2277,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,60,16.3307,17.936,7 +35b60a4a0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,14.0747,14.6987,6 +35f9c5c38,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,38.1227,40.4747,8 +3647cd276,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,54.832,58.176,9 +364e9b5e7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,60,28.3147,30.1493,7 +368be0579,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,55.232,55.9733,6 +3710abba6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,49.2373,50.528,7 +373f470c4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,5.7469,6.8847,7 +376a0a779,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,51.8667,52.56,6 +377e04f82,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,28.1019,29.2397,7 +37b6d1db9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,43.3981,49.4817,12 +37d16f30f,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,33.0536,35.4975,8 +3853bba8e,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,2.112,5.6747,9 +398e818ec,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,13.3631,14.5009,7 +399e17911,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,17.6373,19.4933,7 +39aa6482e,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,16.7413,18.928,8 +39c15e092,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,47.1307,49.5746,8 +3a1293df5,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,31.0453,32.8213,7 +3a2afcf76,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,27.232,27.9253,6 +3aa730d19,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,11.5307,13.8827,8 +3ac6f246a,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,4.2987,6.6507,8 +3b0e345fc,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,51.8027,55.3653,9 +3bb222791,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,1.1552,2.293,7 +3c443fa6e,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,54.3147,58.4373,10 +3c4cf66fd,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,39.9573,40.5813,6 +3c621e663,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,2.8053,56.2453,59 +3ca3a1b6a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,21.3547,22.448,7 +3d28b6a6b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,47.4613,49.0667,7 +3d2b1c860,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,47.4773,48.5707,7 +3dc230571,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,19.9893,21.0827,7 +3ebc2aebe,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,27.024,30.368,9 +3f3c49ad2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,16.4339,18.8778,8 +3f48c15dc,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,39.0327,41.4766,8 +3f5f4aa9a,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,23.584,26.72,9 +3f5fa0d76,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,46.3644,52.4481,12 +3f88e7718,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,8.2953,10.7392,8 +3fa666880,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,60,55.5733,57.1787,7 +3fcca1372,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,38.576,45.0293,12 +3ffaeaa6c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,60,48.2453,51.5893,9 +400b7210c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,60,35.904,54.9013,24 +408314767,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,60,49.3653,54.7467,11 +408fcd1dc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,48.0537,55.9775,13 +415cf2484,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,56.816,59.9573,9 +41829d963,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,0.656,6.0693,11 +419259ac2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,54.496,55.12,6 +41e6d9f63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0.9067,2.7413,7 +420aeb3ea,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,57.7306,58.8684,7 +422de4e4d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,42.3413,43.4347,7 +426c11508,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,22.112,24.464,8 +42a7c4f08,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,30.5493,31.472,6 +42ea7a091,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,34.9653,35.6587,6 +42f4b8b64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,3.184,4.1067,6 +4373930a5,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,45.584,46.208,6 +438c12dbc,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,19.5467,22.688,9 +43b27b5ab,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,23.4987,24.192,6 +43d34d63c,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,9.9627,45.9147,41 +441707582,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,19.568,21.4027,7 +447409a6b,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,25.872,26.6667,6 +4482bd512,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,29.5947,32.7307,9 +44c8b5c73,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,0.704,3.84,9 +459513f88,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,51.9413,56.064,10 +45c356538,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,50.112,50.9067,6 +45e58e08b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,37.9307,38.8533,6 +45eabd218,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,23.4464,29.53,12 +4621de448,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,21.1244,27.208,12 +4696db75c,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,49.2495,50.3873,7 +46c7db806,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,49.472,50.3947,6 +471bb3a84,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,28.0373,31.1733,9 +471df4911,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,46.8695,48.0073,7 +473cac467,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,9.0268,10.1645,7 +477119234,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,20.9387,22.96,8 +477e497db,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,49.728,51.584,7 +47f2eb3b8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,8.5707,9.4933,6 +4874059ad,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,58.1013,59.1947,7 +489ecb611,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,33.8187,34.56,6 +48a77f450,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,52.3573,53.9627,7 +48b7f6cde,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,12.3147,13.2107,6 +48ceeeb96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,28.7231,36.6469,13 +48fb5143f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,60,24.4107,32.08,13 +49b80ec61,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,60,24.2667,26.1013,7 +49fbbb4ca,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,17.3387,19.6907,8 +4a0ca83ec,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,20.832,23.6373,8 +4a7fe1b31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,49.456,55.9093,12 +4afa51495,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,49.4991,51.943,8 +4b3e0b984,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,0.8747,2.1653,7 +4b406a1bc,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,10.7627,12.6187,7 +4b4c2901c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,46.5493,51.9307,11 +4b7da2fb5,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,11.36,14.5013,9 +4bb31c8c1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,45.2213,47.3653,8 +4bb6b8a81,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,36.4053,37.0987,6 +4bc00de61,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,23.1097,29.1933,12 +4c010ec47,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,35.2053,37.5573,8 +4c840ed89,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,32.848,35.9893,9 +4c845907b,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,40.368,43.504,9 +4d54e38a8,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,45.9893,49.1253,9 +4df50c66e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,4.4853,10.9387,12 +4e2898673,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,10.3893,11.2853,6 +4e464ff6b,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,48.6613,50.8053,8 +4e4bc17a7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,2.3947,5.536,9 +4e5702ed7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,21.824,23.6587,7 +4e90ab2fb,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,53.0027,54.8587,7 +4e91c87cc,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,39.0773,39.872,6 +4ef096b89,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,12.4981,20.4219,13 +4f600e6f7,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,40.8613,41.9991,7 +4f6e4f097,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,20.4161,22.86,8 +4fae9a4ea,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,28.7147,29.3387,6 +4fb946872,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,4.016,6.16,8 +50b93a173,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,60,20.8853,22.4373,7 +50f616a04,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,45.0453,45.84,6 +512c1ac7e,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,8.8907,9.6853,6 +51319c540,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,5.0213,7.4652,8 +515861db9,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,37.7707,40.9067,9 +51cb253b0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,45.9627,49.104,9 +51f69a454,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,4.3886,10.4722,12 +5280a7fe9,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,46.48,47.2213,6 +5281fc845,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,7.6213,9.456,7 +52cec3943,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,54.0267,57.8987,9 +533ae3f85,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,31.9573,32.6507,6 +534b6a4a0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,8.8747,9.616,6 +534db172e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,60,34.1013,37.9947,9 +53e4f09ab,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,19.8507,23.9733,10 +5407d8c89,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,23.9307,28.0533,10 +541550e6c,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,30.416,31.1573,6 +54399c91c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,53.776,54.4693,6 +5493f3b1a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,12.1813,13.7867,7 +551385b05,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,1,60,33.9534,52.361,24 +55228e5c5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,60,24.544,26.3787,7 +55648ef63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,53.8773,54.8,6 +556cb3c93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,53.2373,54.3307,7 +557506b62,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,39.2213,42.3627,9 +55b2b19d1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,32.8156,56.4593,29 +55dca9c85,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,9.8975,15.9811,12 +55e48150a,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,32.119,33.2568,7 +5609ef334,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,60,52.016,53.568,7 +560ccf19c,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,15.392,16.1867,6 +561ed4362,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,0.08,3.472,9 +5635d4cbe,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,24.112,25.2053,7 +5673135ca,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,17.1131,25.0369,13 +568f644e1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,23.9467,27.088,9 +56d22a5b3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,15.0347,15.728,6 +56e311030,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,4.7413,8.864,10 +56ff074df,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,2.7093,3.6053,6 +5723a520c,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,10.1973,13.3333,9 +579bcf9e0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,20.1839,21.3217,7 +579db058c,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,36.2293,37.52,7 +57b4ff4be,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,27.424,30.5653,9 +57de62a79,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,13.1251,19.2087,12 +57ff372f3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,33.5467,34.3413,6 +5816c1336,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,4.864,6.6987,7 +581d07559,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,9.4293,10.1707,6 +582d6efec,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,47.3333,51.456,10 +5840c2d77,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,44.624,47.7653,9 +5857d6f6d,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,17.2907,18.1867,6 +5877cea08,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,53.0773,53.8187,6 +58b6b8a47,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,53.312,54.4053,7 +58b92fcdc,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,15.824,18.176,8 +590163609,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,0.0267,2.3787,8 +596463649,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,2.384,5.9467,9 +5977f6b4c,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,16.3467,17.2427,6 +599b19a33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,53.8773,57.2213,9 +59a9eb657,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,43.4445,56.3722,18 +59ce91d00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,60,0.864,2.6987,7 +59e549ee2,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,49.632,51.984,8 +5a2185b19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,60,6.4853,9.9253,9 +5a3f09a5c,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,44.2166,46.6605,8 +5a55970ad,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,19.9787,26.432,12 +5a7cc4e44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,49.9147,52.5227,8 +5a8a2b155,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,33.8347,34.528,6 +5ac6b1e85,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,50.0053,52.1493,8 +5b1e3b55b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,2.8,13.216,16 +5b219bb1c,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,0.56,3.696,9 +5b5218aba,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,50.7066,51.8444,7 +5b54af5a2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,20.4213,21.1627,6 +5b8830884,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,32.0213,36.144,10 +5bf1ac192,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,28.8566,34.9402,12 +5bfe1dec6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,22.352,44.0267,27 +5c1ae8b6f,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,55.9147,56.7093,6 +5c57d8095,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,21.5787,24.9227,9 +5c609dbfb,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,19.9947,20.688,6 +5cd1a3c29,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,42.7787,45.9147,9 +5d606b7a3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,10.2933,13.856,9 +5d61b5cce,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,45.2267,49.3493,10 +5d7e9091c,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,7.4453,11.008,9 +5db2e86fe,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,18.6293,23.8187,11 +5debe8941,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,60,46.4533,48.0053,7 +5e7e1643e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,60,3.2427,5.0773,7 +5e8c07a8e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,60,21.8667,23.472,7 +5e8e5d53b,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,22.768,26.8907,10 +5f51598f1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,25.9467,32.4,12 +5f8eecc9e,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,7.9412,58.9322,56 +5f9157d7b,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,58.9333,59.728,6 +5f9b4785b,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,16.1333,48.8907,38 +604583528,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,51.9314,59.8552,13 +606f1e495,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,12.6613,15.0133,8 +6093f0100,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,60,2.2453,5.5893,9 +60a493ad4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,40.688,42.832,8 +60b260508,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,49.7493,54.6987,10 +6102fb9d6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,12.752,13.4933,6 +61741251f,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,16.7996,19.2435,8 +617d4dbbd,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,0.672,3.808,9 +619a7af56,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,49.7813,53.1253,9 +61d1f5e59,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,48.2046,56.1284,13 +61de2c695,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,12.6987,13.4933,6 +61f1c7d5f,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,47.6427,48.384,6 +621dc03b6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,17.7333,18.4747,6 +629489592,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,2.7893,5.9253,9 +62ff9d03d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,15.312,17.92,8 +631f97222,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,15.1278,16.2656,7 +6346c01fa,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,15.0507,15.744,6 +6351581d6,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,53.5733,54.3147,6 +63971df42,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,9.5787,11.7227,8 +63a82d848,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,39.4827,40.3787,6 +63cc4d598,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,38.8107,39.4347,6 +64025c7e6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,16.5707,17.264,6 +644f71ae8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,15.5787,16.1653,6 +65123f0c1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,3.3901,9.4737,12 +655ca0adb,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,47.1307,53.584,12 +65971c0e7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,10.016,11.8507,7 +6666e213d,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,1.296,3.4827,8 +670a35128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,60,43.8613,47.3013,9 +67763b1b9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,18.6933,19.3867,6 +682657006,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,15.3173,15.9413,6 +6838dc4f9,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,33.4832,35.9271,8 +687733bf1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,11.9307,12.672,6 +689b160fc,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,29.3707,29.9947,6 +68d182a12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,4.8107,5.904,7 +68f7d8362,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,38.384,39.9893,7 +690168015,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,38.8053,40.9493,8 +69173294f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,40.3467,41.952,7 +697f7210b,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,2.9653,7.088,10 +69aacafc4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,60,39.824,46.4747,12 +69c09e886,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,12.528,14.384,7 +69ea6d76b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,60,30.9333,32.4853,7 +6a0ac2d09,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,15.1568,21.2405,12 +6a2b677ce,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,41.5467,43.7333,8 +6a6af3c63,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,40.304,42.08,7 +6b0891684,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,26.2293,27.024,6 +6b1093628,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,37.728,38.352,6 +6b891f8f2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,8.6507,11.792,9 +6b9e3f7c6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,7.6373,8.7307,7 +6bf2953a8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,19.4613,36.736,23 +6c032e356,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,51.6586,57.7422,12 +6c246167d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,3.12,4.672,7 +6c4ce1cf2,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,11.4773,12.2187,6 +6c52da176,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,18.16,21.3013,9 +6c660a505,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,60,51.7707,53.3227,7 +6d5f5e052,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,60,36.9013,38.4533,7 +6d6ba3db7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,60,42.9547,44.56,7 +6d93f853d,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,10.1173,48.2293,44 +6e82ee19a,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,27.0803,29.5242,8 +6eb03e9ca,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,9.7973,12.9387,9 +6f7eec323,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,9.6907,12.2987,8 +706e6f1e8,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,53.0187,56.1547,9 +7080d05d4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,50.4047,56.4883,12 +70c289aa5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,60,31.1307,34.5707,9 +710177a21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,50.2133,53.5573,9 +710537df8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,32.7093,34.544,7 +711630bd8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,8.896,9.5893,6 +717780789,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,37.808,39.952,8 +71c22a29b,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,55.8133,59.936,10 +71cf9646b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,60,11.8293,29.7867,23 +71db64300,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,19.3074,25.391,12 +71e134a57,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,36.7947,37.6907,6 +7227068d3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,32.2293,35.3707,9 +725c5b6f1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,53.2587,57.3813,10 +7277aa5a8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,55.5307,58.1387,8 +728459067,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,4.2144,21.1998,22 +7295291a7,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,5.3173,6.2133,6 +72a9f19b4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,10.3413,12.176,7 +72ccf4de7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,60,36.9813,40.4213,9 +7341161bd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,13.1425,16.9215,9 +737d85472,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,29.3152,37.239,13 +738e4dcb5,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,53.2747,56.8373,9 +73c4d8db8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,52.0243,55.8034,9 +73f2ff0fd,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,30.8907,31.632,6 +7403b8dde,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,5.1413,6.9973,7 +7448edc55,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,20.16,21.056,6 +745171bf2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,4.1547,6.2987,8 +7476d961f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,60,18.48,20.3147,7 +7478fd629,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,37.936,38.6293,6 +74a117970,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,60,7.4987,12.88,11 +74c1043c9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,56.0107,56.5973,6 +74fbde29b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,51.8827,52.576,6 +750e35881,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,51.056,52.912,7 +755d6c7eb,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,14.4427,17.0507,8 +7583b7c0c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,23.8005,27.5795,9 +75c8ccce9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,12.592,13.1787,6 +76b4b3f7f,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,55.44,59.0027,9 +76bcc78f1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,1.376,2.4693,7 +77299bde7,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,5.7227,43.472,43 +772bd1045,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,52.8587,53.4827,6 +774912d66,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,16.9157,37.6454,26 +774d13e9c,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,39.04,42.6027,9 +7764cbbfd,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,5.7121,8.156,8 +7765e82d3,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,58.3147,58.9387,6 +7768c96f2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,10.016,10.912,6 +778ab401f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,11.5573,12.6507,7 +77a7a66fc,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,42.1616,44.6055,8 +77cf1b7e3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,1.376,2.4693,7 +77e82339a,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,46.9013,50.0427,9 +77f2b9543,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,49.888,52.032,8 +784eb5d7f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,55.8987,56.992,7 +7859fda05,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,51.5251,59.4489,13 +7878d8306,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,48.7253,55.1787,12 +787c0db92,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,39.5733,41.76,8 +7893b8f70,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,3.7013,4.496,6 +78941c48b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,52.88,59.3333,12 +78f515b6f,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,32.1067,35.248,9 +7925510fe,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,34.7307,36.9173,8 +796ab9da1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,39.312,42.656,9 +79b28cad5,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,57.7013,59.5573,7 +79f38de91,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,21.0721,27.1557,12 +79f7b3873,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,3.0453,6.3893,9 +7a396818c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,48.72,49.8133,7 +7a49b2465,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,35.0933,38.2293,9 +7a5789516,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,9.8667,12.2187,8 +7a9d46229,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,15.5093,55.1147,45 +7ab084435,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,15.8186,18.2625,8 +7ad715d6d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,60,41.552,43.104,7 +7ada8c4da,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,16.4267,17.168,6 +7b287d190,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,60,44.8107,50.192,11 +7b4ee85a5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,37.4613,38.3573,6 +7b79194b3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,9.6,11.952,8 +7c858b1f2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,60,33.3707,38.752,11 +7caaeb706,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,47.008,49.616,8 +7cc6d509a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,30.3947,31.9467,7 +7cd8ce712,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,24.7733,28.2133,9 +7dec0f472,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,52.4365,54.8804,8 +7e0d06929,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,37.5409,39.9848,8 +7e370f1f3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,46.064,46.6507,6 +7ed4d3ca1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,17.952,18.224,6 +7f07486d1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,32.4963,38.58,12 +7f082c82d,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,29.36,33.4827,10 +7f5f71e31,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,22.5013,24.5227,8 +7f6df469c,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,44.288,46.4747,8 +7f737a9c4,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,43.0507,43.6747,6 +7f8fab554,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,14.24,16.096,7 +7f9246130,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,0.5173,2.3733,7 +7f9b94a29,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,6.8427,7.7387,6 +802907092,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,45.3486,53.2724,13 +804fa03e1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,60,53.7013,57.0453,9 +80590e499,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,7.4933,8.5867,7 +807efd6bb,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,52.4427,53.184,6 +8080b2283,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,52.1867,52.8107,6 +80c09eb56,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,35.3333,39.456,10 +818a1635a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,13.9253,15.0187,7 +819afd877,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,36.32,38.176,7 +81b493ca3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,2.656,4.512,7 +81bcdeb06,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,60,36.8907,42.272,11 +8253e1640,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,41.0819,42.2197,7 +82a813386,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,2.1333,3.2267,7 +82d59d24d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,60,29.568,31.1733,7 +82ff46226,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,15.9695,23.8933,13 +83028db30,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,27.7595,28.8972,7 +838227e71,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,11.152,14.2933,9 +84aed0cf9,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,57.7013,59.8453,8 +84d2746ce,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,56.1813,58.9867,8 +84fd342f8,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,13.0133,16.1493,9 +851c98ea8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,52.8587,53.552,6 +8531f27ff,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,54.912,58.0533,9 +8574d9e81,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,27.872,28.7947,6 +8593f9606,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,30.384,30.9707,6 +85b891a48,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,9.6533,12.7947,9 +85fd75b28,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,9.8453,12.9813,9 +868db1d19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,21.0721,28.9959,13 +86c44dd51,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,30.5653,31.36,6 +871aff1b5,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,32.0053,34.3573,8 +87b2981de,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,11.168,11.8613,6 +87b64a134,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,60,34.048,35.6,7 +87bf9c992,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,60,46.3307,47.8827,7 +87db70dff,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,39.4507,41.8946,8 +87e518677,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,41.4933,44.6347,9 +880652c2a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,0.2728,8.1966,13 +88186ba66,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,18.4373,19.024,6 +88b5c9c1b,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,39.7493,42.1013,8 +88f783ab9,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,8.0747,10.2187,8 +890abb1e3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,34.9751,41.0587,12 +891822ace,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,51.728,55.2907,9 +896080a53,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,1.728,4.864,9 +89898c3c9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,38.9547,43.0773,10 +89fe494b6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,20.6187,22.224,7 +8a0ee2e2c,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,4.7627,8.8853,10 +8a59b5c31,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,30.1973,32.5493,8 +8a63ca713,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,51.808,53.9947,8 +8a99905ac,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,43.152,43.8933,6 +8ad1a246f,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,27.1307,27.7547,6 +8b237e9eb,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,20.0747,20.816,6 +8b24f2f98,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0.208,0.9013,6 +8b68b817e,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,17.328,17.952,6 +8c20115ce,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,17.7547,21.0987,9 +8c44ed2cf,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,56.6915,59.1354,8 +8dddf58e0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,10.352,11.2747,6 +8e0f816f1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,42.848,44.704,7 +8e2ff1226,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,2.144,3.92,7 +8e56d782f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,47.104,48.9387,7 +8eb0e591c,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,42.4635,44.9074,8 +8ec8b0275,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,1.2829,2.4207,7 +8ee219910,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,42.56,44.704,8 +8ef1d1114,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,55.4293,58.7733,9 +8f0f2528a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,7.392,8.4853,7 +8f3d579c8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,4.496,10.9493,12 +8f821e1ef,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,17.7547,18.3787,6 +8f8e4f3e2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,12.1173,13.7227,7 +8f942c9f5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,20.2773,22.4213,8 +8fa859d45,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,15.9093,19.472,9 +8ffe19a69,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,55.2267,59.3493,10 +908290ae2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,11.6533,12.7467,7 +90a1eac6d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,11.488,12.5813,7 +916eb2a00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,60,0.6507,2.256,7 +918ddce17,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,21.664,24.8053,9 +9251fdbdd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,60,7.0187,40.4267,39 +92588122c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,2.7947,5.4027,8 +929d655d3,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,52.56,53.3013,6 +92ae9bcc2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,24.9905,27.4344,8 +9316428b4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,15.8507,17.872,8 +935e4c9b0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,49.8667,53.0027,9 +9367e95cc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,25.3227,28.6667,9 +9369b4be6,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,29.9413,33.504,9 +93e10b125,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,18.224,19.12,6 +9425c4b01,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,51.3493,54.4853,9 +942ca05c0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0.464,47.856,53 +944edda33,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,43.7867,45.5627,7 +945c8d7a8,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,56.3947,58.7467,8 +946390b26,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,13.7172,16.1611,8 +9496d86bf,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,40.5813,41.872,7 +956aaf47c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,23.1503,29.2339,12 +958db1ebe,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,60,28.0213,29.5733,7 +960572cd4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,5.9413,9.0827,9 +96fc32e3d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,37.6976,45.6214,13 +97630c03d,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,11.8667,13.1573,7 +983a13114,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,60,37.856,41.296,9 +986405edb,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,36.6453,40.768,10 +988e03248,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,37.2854,39.7293,8 +989b95591,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,55.4827,56.176,6 +996546525,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,45.9639,52.0475,12 +99f72cf18,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,35.5614,36.6991,7 +9a76cab9c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,1.7387,24.2827,28 +9a9951303,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,23.28,25.888,8 +9abdbfc9f,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,18.6187,21.7547,9 +9afa17810,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,0.528,3.6693,9 +9b92a698e,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,42.0693,45.632,9 +9bdc79a14,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,30.4907,32.8427,8 +9c2286d0c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,40.4267,41.12,6 +9c8947073,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,25.7653,27.056,7 +9c9aa37f5,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,3.9733,6.1173,8 +9ca91d4bc,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,36.1813,36.8053,6 +9cb1f4a34,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,27.3653,29.9733,8 +9cb6ae5e3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,39.7173,40.512,6 +9cccd9345,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,54.1973,55.9733,7 +9d1eee84d,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,28.768,30.624,7 +9d293be93,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,52.7627,55.8987,9 +9d2bf51ce,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,54.4907,55.584,7 +9d6de44f0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,1.1787,4.32,9 +9dad9aacc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,21.5423,27.6259,12 +9df5da644,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,47.1253,48.96,7 +9e242fe66,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,60,30.96,32.7947,7 +9e52cf6ad,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,29.5573,30.6507,7 +9e5d5b03e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,39.6853,42.2933,8 +9ec0c64c0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,54.48,56.5013,8 +9f10784cd,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,20.496,24.6187,10 +9f8ebbfc3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,23.776,27.12,9 +9f8fcb625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,52.7673,58.851,12 +9fbd7e1f6,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,51.9467,52.5707,6 +a00373b12,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,11.9627,12.5867,6 +a0af97b46,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,21.2853,24.4267,9 +a0c662123,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,6.6347,7.4293,6 +a1048dac6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,60,15.6533,18.9973,9 +a17b9af5d,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,9.7387,11.5947,7 +a1b1a5e31,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,5.6,6.3413,6 +a1d96c821,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,50.32,51.0133,6 +a1ef2a84f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,47.7013,48.7947,7 +a2045d15d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,49.1093,50.7147,7 +a212bf2e0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,5.168,5.792,6 +a2441a74b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,10.0213,25.488,21 +a277651b1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,41.4293,43.2853,7 +a2a211fa8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,60,17.7653,19.3173,7 +a2b073406,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,40.7684,48.6922,13 +a3194950c,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,8.7947,11.1467,8 +a38cadf2c,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,7.7613,10.2052,8 +a3d1e4f37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,14.0107,15.8453,7 +a4035e64b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,7.104,7.376,6 +a461f82cd,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,26.6133,28.9653,8 +a4b2f4298,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,43.536,47.6587,10 +a5034a8b3,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,39.5733,41.76,8 +a54894b33,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,23.424,24.2187,6 +a5b66a68d,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,13.5093,14.304,6 +a5ceef07b,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,7.984,9.84,7 +a5eface9a,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,37.7973,38.6933,6 +a5f008080,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,18.3307,20.4747,8 +a64b357d4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,60,50.7413,54.1813,9 +a6610076b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,35.0933,40.4747,11 +a66546dfd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,38.0373,39.5893,7 +a66d44311,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,41.8987,44.0427,8 +a691e3d90,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,39.952,43.5147,9 +a6b4dda07,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,1.7867,2.88,7 +a6c887130,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,11.3547,12.048,6 +a79847d38,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,50.464,51.088,6 +a7ff51ac4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,32.1173,33.7227,7 +a82f931d1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,8.6667,11.472,8 +a8e6d4d75,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,35.7707,36.864,7 +a90c80393,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,26.2773,26.9707,6 +a92850ccd,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,53.744,55.52,7 +a9637eb5b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,41.378,47.4616,12 +a9868c3d1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,7.0293,8.1227,7 +a993402e2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,31.9507,48.4252,22 +aa7d3cfe0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,6.2752,8.7191,8 +aacebff62,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,25.8933,29.456,9 +ab383c341,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,50.9067,51.8027,6 +ab5e71344,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,60,31.4827,33.0347,7 +ab900ff48,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,40.32,42.464,8 +abbef468c,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,30.4853,32.3413,7 +abd8cff8d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,60,33.1467,34.6987,7 +abed3437e,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,16.544,17.3387,6 +ac3da0b30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,16.4213,17.1147,6 +ac7721796,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,55.5733,57.5947,8 +acb80ff69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,60,48.656,50.4907,7 +acc030d72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,60,22.544,27.9253,11 +acff61b19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,24.0213,27.3653,9 +addfd4f67,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,9.456,11.312,7 +ae210f726,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,44.1333,44.8747,6 +ae4a3b1e2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,41.424,44.56,9 +ae4ed2b70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,60,17.4827,19.088,7 +ae521f781,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,39.888,43.0293,9 +aebf55c7c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,13.2053,14.8107,7 +aecf3d8d2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,48.032,50.64,8 +aedfcfe60,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,11.1627,11.904,6 +aef347a03,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,60,1.4347,3.04,7 +aefd0f061,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,11.2373,11.9787,6 +af0113159,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,36.1547,37.0773,6 +af15de055,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,54.3467,56.5333,8 +af1d7ef13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,50.8533,51.9467,7 +af22ae5ba,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,23.0027,23.6267,6 +af36838f2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,44.9387,47.0827,8 +af6a0d203,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,55.0507,57.6587,8 +afa49cbeb,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,1.6213,5.184,9 +afaa8d38f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,60,52.0053,53.5573,7 +b01abd3b2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,32.9173,36.48,9 +b056e5bc2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,2.9333,6.832,9 +b12e80061,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,18.848,20.624,7 +b1c09c89b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,30.9493,31.2213,6 +b1c97f28a,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,34.032,36.384,8 +b1d18170a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,59.0987,59.3707,6 +b2338ed38,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,36.1013,36.896,6 +b297fe7ef,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,51.1893,54.3307,9 +b2ea74670,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,9.616,11.472,7 +b2f3a6df5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,13.0322,19.1158,12 +b3f517843,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,39.0027,40.608,7 +b4110d8aa,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,30.336,31.232,6 +b41ae319b,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,4.5013,6.6453,8 +b441cf212,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,51.9546,59.8785,13 +b45319264,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,25.28,28.416,9 +b4a3fb69c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,54.992,57.6,8 +b4df5aef8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,17.3067,21.4293,10 +b55d2f7b4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,48.2133,54.4102,12 +b62292f65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,34.9067,36,7 +b62b5a988,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,36.8053,51.872,21 +b65e327ee,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,22.146,23.2838,7 +b661bd840,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,37.312,38.208,6 +b6671af88,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,6.6525,7.7903,7 +b68e70116,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,45.1093,48.2507,9 +b6b2bb1cd,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,0.1173,2.2613,8 +b6ddaa9b4,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,11.84,13.696,7 +b7485fa88,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,25.9787,55.368,35 +b7a71d152,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,57.4773,58.1013,6 +b7c63f218,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,6.0533,6.6773,6 +b7e2ef23f,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,17.136,18.912,7 +b7fcfb502,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,56.2827,59.4187,9 +b80bfc8f2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,8.5973,11.2053,8 +b89bd05a1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,44.432,45.3547,6 +b8d1e4865,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,43.216,44.768,7 +b90d004b4,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,44.0533,44.9493,6 +b95c42272,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,23.5093,27.632,10 +b96574294,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,20.624,21.3173,6 +b988da7d0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,30.6271,38.5509,13 +b9a6e6ce4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,20.9333,23.2853,8 +b9f3581d5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,58.5333,59.2267,6 +bac502597,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,36.0853,36.88,6 +bae8eb497,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,7.7973,8.8907,7 +bb00d418c,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,15.5733,17.4293,7 +bb4fd3041,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,43.4736,44.6113,7 +bb854bd6e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,60,36.4853,38.0373,7 +bbd6815be,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,38.7307,39.6267,6 +bbd784551,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,45.3973,46.0213,6 +bbd9ac366,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,55.92,56.6133,6 +bc18e6dba,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,5.1253,6.2187,7 +bc32d8c84,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,60,18.288,23.6693,11 +bc9dd660e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,22.768,40.5227,23 +bcd686baf,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,17.7387,20.88,9 +bd62d4fa2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,8.185,23.9804,21 +bd97b0335,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,9.822,10.9598,7 +bda762977,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,5.8293,12.2827,12 +bdacd5cd2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,60,22.3467,27.728,11 +bdc8dd456,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,14.2773,14.9013,6 +bdd4aa62c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,43.7227,50.176,12 +be0356cf5,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,35.9893,38.3413,8 +be6a8ad0d,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,33.8933,34.6347,6 +bea3bcffa,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,29.2533,33.376,10 +bf58cd236,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,13.392,17.5147,10 +bf6aa9579,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,47.7653,48.5067,6 +bf964d1fa,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,18.128,57.888,45 +bf9f90405,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,7.7067,9.4827,7 +bfacbc575,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,14.752,15.376,6 +bffdcd085,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,10.8693,12.4747,7 +c0786babe,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,7.8187,8.6133,6 +c12e0a62b,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,1.5467,29.9413,34 +c13f3ab95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,11.7973,12.4907,6 +c15840ebf,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,53.616,54.3573,6 +c16b7270b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,58.352,58.624,6 +c182aef8c,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,8.2507,9.1467,6 +c2143392b,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,48.1867,49.9627,7 +c220f5fec,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,23.2747,26.4107,9 +c245b2295,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,50.3573,53.92,9 +c271bc1ea,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,25.664,26.5867,6 +c350c0f9f,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,49.2107,50.9867,7 +c3662d871,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,12.9387,13.5627,6 +c3843eb33,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,56.2933,57.088,6 +c39b2fcd3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,29.2053,30.128,6 +c3ed6269b,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,48.672,50.448,7 +c4a74dcf1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,51.9413,53.7173,7 +c4b778e64,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,28.4967,29.6345,7 +c4ec1e7de,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,56.1067,59.2427,9 +c5503ce7b,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,7.472,8.2133,6 +c569b8181,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,24.0373,26.3893,8 +c5758ce2f,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,48.46,49.5978,7 +c5d61be80,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,26.9173,28.7733,7 +c68fb36e7,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,15.9253,19.0667,9 +c6a2c0e7c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,60,21.2107,22.816,7 +c6e411c90,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,60,55.7653,57.3173,7 +c72082616,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,19.792,22.144,8 +c72150f3c,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,47.9898,49.1276,7 +c721d69de,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,60,0.6507,2.2027,7 +c75f2655f,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,4.784,6.928,8 +c7677947e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,19.0187,21.6267,8 +c7918c0f8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,38.7413,40.3467,7 +c84943395,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,14.992,15.888,6 +c867bdc27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,2.2407,8.3244,12 +c892aa78d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,16.1333,16.4053,6 +c8bed66bb,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,46.8172,49.2611,8 +c91cae4aa,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,23.4115,34.0853,16 +c96b0c428,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,11.9787,12.8747,6 +c9899ee73,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,0.5653,1.1893,6 +c9bd1f599,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,0.4354,6.519,12 +c9dd4934b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,60,29.376,30.928,7 +c9df2fecf,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,53.0576,54.1954,7 +c9fc89429,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,39.3493,39.6213,6 +ca5018f35,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,17.3163,18.4541,7 +ca99623ca,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,13.0032,15.4471,8 +cb10cd9d9,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,9.9147,10.5387,6 +cb5ddad47,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,60,17.888,32.24,20 +cbc07e2ec,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,55.584,58.72,9 +cc05ecd08,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,0.6667,1.36,6 +cc2c48fd7,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,20.2347,20.976,6 +cc7c17269,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,60,29.552,34.9333,11 +cc8d81b6a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,20.9973,22.0907,7 +ccd0a0bff,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,4.784,7.92,9 +ccda58237,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,54.1707,57.312,9 +ccee900dd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,25.4933,58.672,39 +cd1d48eec,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,10.5493,13.8933,9 +cdbca5fb8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,60,17.184,18.7893,7 +cde5fd6be,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,42.672,44.2773,7 +ce05b264d,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,49.936,53.0773,9 +ce8270c7b,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,21.264,24.4,9 +cea56c949,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,14.0587,16.4107,8 +cf44264e5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,60,50.4587,53.8987,9 +cf568dfc0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,60,29.4773,31.312,7 +cf6bd44d9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,23.4453,24.3413,6 +cf739c61d,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,57.4694,59.9133,8 +cf7af9895,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,56.4245,58.8684,8 +cf867adcc,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,11.7173,12.4587,6 +cf8fbc4f1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,56.1227,58.4747,8 +cfa0614e0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,49.28,50.5707,7 +cfdd68da2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,3,60,7.744,9.296,7 +d09dc9dd5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,31.4398,39.3636,13 +d1229a222,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,49.4507,51.056,7 +d1477bf79,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,5.2107,8.352,9 +d14c92027,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,3.0827,6.192,9 +d15af7840,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,37.4987,39.0507,7 +d1607e9b2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,4,60,53.3333,54.9387,7 +d169ed0b5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,3,60,18.4427,20.976,8 +d1debe396,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,25.264,27.408,8 +d22169f4e,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,7.1866,8.3244,7 +d291fab38,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,60,6.9387,9.5467,8 +d29f0ca6d,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,33.344,35.5307,8 +d2cb96229,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,22.224,25.6267,9 +d3020850e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,40.5387,41.1253,6 +d3195bece,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,38.0459,40.4898,8 +d32242280,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,44.6868,50.7704,12 +d3324f1c0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,24.9973,26.0907,7 +d35473d24,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,42.1965,43.3342,7 +d3713ed31,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,56.6133,58.4693,7 +d49a94504,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,1.2853,2.08,6 +d4a03bf19,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,29.3547,32.4907,9 +d4bb34753,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,53.7013,57.824,10 +d5163b4ef,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,5.5554,7.9993,8 +d53f58786,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,3.728,4.3147,6 +d58429096,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,3.776,46.9067,49 +d5992de83,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,6.3274,14.2512,13 +d5997789c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,1.9215,8.0051,12 +d59d099b3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,2,60,32.9973,47.5413,20 +d5c4f55f4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,34.7947,35.7173,6 +d60157507,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,60,20.4427,25.824,11 +d635637b7,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,20.5067,22.8587,8 +d63d04076,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,0.448,1.072,6 +d63f467b6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,55.6693,59.0133,9 +d66a5f57b,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,41.904,42.528,6 +d6c75de73,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,41.9093,43.6853,7 +d7068ae10,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,26.7467,27.6427,6 +d73ffbc1e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,26.432,27.1253,6 +d7a655c45,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,60,16.9173,20.3573,9 +d7cf29809,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,40.88,41.6213,6 +d7d49c913,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,46.9707,49.3227,8 +d80fab44f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,60,50.992,58.9333,13 +d817ed6ad,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,4.352,6.704,8 +d82a81c98,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,34.656,35.3973,6 +d82d5792e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,60,46.8053,50.1493,9 +d86155abb,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,5.1787,6.0747,6 +d8b7f9ed6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,34.0753,41.9991,13 +d91f25ca7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,16.9854,23.069,12 +d922d82e9,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,21.7547,24.8907,9 +d93aaa1bc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,3.0987,3.792,6 +d96242159,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,60,51.8187,52.4427,6 +d9a1b1ea9,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,38.592,39.488,6 +d9bfc9e6b,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,56.816,57.6107,6 +da0d07110,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,1.4027,5.5253,10 +da329b0a5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,52.0907,53.0133,6 +da708c386,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,26.7147,29.8507,9 +da956248e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,3,60,45.5893,50.9707,11 +daa57db65,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,54.72,56.496,7 +dabd22b08,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,28.4,29.3227,6 +dabddc8ab,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,10.4316,11.5693,7 +dac0c6cb8,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,60,21.8133,22.4373,6 +dac7a83a3,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,41.3489,43.7928,8 +dacda707f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,3.2798,9.3635,12 +db13dd765,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,22.816,24.672,7 +db34c4a5d,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,27.9917,30.4356,8 +db3cdbf35,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,50.704,51.4453,6 +db7d1bf42,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,51.2639,57.3475,12 +db86f881b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,20.976,22.0693,7 +db9673439,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,60,21.824,25.264,9 +dbd243625,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,9.6587,13.0027,9 +dbfb5f469,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,3.12,4.016,6 +dca449f04,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,13.7067,16.848,9 +dcc4d4531,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,31.2373,33.072,7 +dcf4ecca1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,27.6373,29.7813,8 +dd0830c83,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,4.288,5.184,6 +dd37a8e14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,60,37.8453,41.1893,9 +dd38bef4b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,22.6917,30.6155,13 +dd46cb7e9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,50.144,51.2373,7 +dd9c51f59,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,60,52.8373,56.1813,9 +de3737c21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,54.4,56.0053,7 +de80fb815,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,58.3573,58.944,6 +dee541308,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,38.5973,41.4027,8 +dfa6a4a64,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,9.8162,12.2601,8 +dfa80535f,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,7.6162,10.06,8 +dffd8ea5f,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,45.008,47.36,8 +e00019499,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,60,33.1947,38.576,11 +e005ce0f5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,1.7813,2.6773,6 +e03896110,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,32.7893,36.912,10 +e0e8ceb33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,34.7093,35.4027,6 +e1582bf8b,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,56.6451,57.7829,7 +e1a046050,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,39.5253,40.448,6 +e1c5ad99b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,46.6083,52.6919,12 +e1ef18eee,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,47.3653,49.5093,8 +e22487d26,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,22.6685,25.1124,8 +e23e84994,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,60,56.656,58.208,7 +e25933b0a,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,17.632,18.4267,6 +e2ce1658e,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,34.7307,36.8747,8 +e2de15b96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,32.8747,36.2187,9 +e383713d9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,0.0348,7.9586,13 +e393a4c21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,49.5746,55.6582,12 +e42155880,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,13.056,13.7493,6 +e42215aa0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,1.392,12.295,16 +e42afc0bd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60,58.0853,59.92,7 +e4e8c501e,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,4.139,6.5829,8 +e5625ee50,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,52.094,53.2317,7 +e569702d8,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,3.712,6.848,9 +e574b09d3,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,21.2,23.552,8 +e585e1acb,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,43.8827,46.2347,8 +e5d1f4efc,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,23.328,24.224,6 +e65e42310,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,3,60,36.9173,38.0107,7 +e6622a3c9,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,30.4213,32.2773,7 +e666beee8,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,44.0853,46.8907,8 +e6af91bbf,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,3,60,1.5573,4.6933,9 +e6de52902,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,22.2987,42.3147,26 +e71d72805,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,60,50.224,51.776,7 +e734a1cde,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4,60,36.6347,42.016,11 +e755e15ec,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,13.1093,14.0053,6 +e7847849b,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,0.0267,1.8827,7 +e7a81dc55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,3,60,46.9227,47.616,6 +e7bc335fa,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,6.4907,7.232,6 +e7de0a728,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,23.008,25.36,8 +e7dfc5c5f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,60,38.048,39.6533,7 +e80890ff7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,21.8848,29.8086,13 +e8b209030,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,4.1493,4.736,6 +e9255d07c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,60,17.0987,18.704,7 +e9622376a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,60,30.5707,32.4053,7 +e97de3f6d,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,56.6933,56.9653,6 +e9bab320a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,60,5.4773,8.8213,9 +e9eb6d4dd,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,60,0.9547,1.648,6 +e9fa364b7,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,24.8853,25.68,6 +ea133d03e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,4,60,54,55.552,7 +ea71a1a7d,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,2,60,41.7333,44.8693,9 +ea7aa9e69,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,37.664,41.7867,10 +ea7da0899,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,18.1973,21.3387,9 +ea961733c,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,60,48.6987,49.3227,6 +eac4c4220,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,3.216,4.112,6 +eaf5cf482,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,49.9413,54.064,10 +eb0cd97da,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,22.1013,24.1227,8 +eb3145e54,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,55.3227,57.6747,8 +ebdd7c181,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,47.84,51.9627,10 +ec1255787,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,29.936,31.792,7 +ec1c4a754,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,33.3381,35.782,8 +ec24a4d07,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,15.696,16.3893,6 +ec3a54dc6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,60,38.7467,39.3333,6 +ec63de3ab,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,56.8213,59.1733,8 +ecd47f7cc,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,17.1886,23.2722,12 +ed10a157a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,38.7019,44.7855,12 +ed2ae7025,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,4,60,58.1333,58.8267,6 +ed2f84e75,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,4,60,19.6107,32.7053,19 +ed36faac8,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,23.7013,25.5573,7 +ed38c48b8,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,39.6853,41.4613,7 +edd3b27d6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,3,60,36.3413,37.264,6 +edf598655,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,47.376,49.52,8 +ee3dc0bc6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,42.8533,53.5253,16 +ee3eab224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,3.9822,10.0659,12 +ee80e2415,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,55.0827,55.824,6 +eeb9a3c4b,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,60,51.9787,52.6027,6 +eee00469a,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,60,14.2164,15.3542,7 +ef10f60bf,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,44.2667,48.3893,10 +ef3647390,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,60,26.352,29.488,9 +efb6a2e01,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,60,51.9837,53.1215,7 +efbfe6b39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,23.232,24.1547,6 +f152e26e3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,51.2533,55.376,10 +f1aa1c855,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,60,5.2907,6.896,7 +f1cc7d0a4,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,60,0.9867,4.1227,9 +f2493eda1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,16.544,20.6667,10 +f2890653e,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,60,19.2145,20.3523,7 +f2c52223a,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,6.4853,8.3413,7 +f2d7b8ed8,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,52.7627,54.9493,8 +f33a1793f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,60,8.3147,10.1493,7 +f3b84afb1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,2,60,23.0293,24.1227,7 +f3cb40395,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,48.3439,54.4276,12 +f3f82b897,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,60,51.7013,55.2747,9 +f4d05c0de,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,42.08,44.432,8 +f51c0da28,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,47.056,50.1973,9 +f543f0d31,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,60,24.3868,25.5245,7 +f55ce9e53,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,1.5893,5.712,10 +f5889157c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,53.04,54.8747,7 +f5c3420f6,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,28.0033,30.4472,8 +f5e6456f0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,41.6693,42.464,6 +f6e41b038,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,9.056,12.1973,9 +f702f163c,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,60,20.688,20.96,6 +f7466aeeb,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,34.352,37.9147,9 +f7d3b0080,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,43.0904,45.5343,8 +f7d92975f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,3,60,28.5141,34.5977,12 +f84b8c8d3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,60,1.1958,9.1196,13 +f851b9605,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,51.7493,55.312,9 +f87ef432d,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,17.5413,19.8933,8 +f8c661973,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,18.2347,20.0693,7 +f97ababc1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,60,9.12,14.2293,11 +f9e724b46,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,60,16.0693,17.6747,7 +fa0eee1e4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,39.0347,43.1573,10 +fa9353c0a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,60,44.4662,50.5498,12 +fb02b0607,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,60,36.4427,37.536,7 +fb3725395,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,60,54.1227,55.0453,6 +fb5371e7b,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,60,50.1667,56.2503,12 +fba69b00a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,4,60,36.5653,37.6587,7 +fbb31daeb,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,4,60,52.7615,53.8993,7 +fbd5bbb6e,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,4,60,45.099,53.0228,13 +fc47cfba3,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,13.952,15.2427,7 +fc6609050,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,42.9973,43.792,6 +fc6c3b488,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,60,42.3467,43.44,7 +fd1970634,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,60,55.4987,57.2747,7 +fd3f0d49b,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,60,39.8507,41.9947,8 +fd6a520d8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,60,6.8213,10.944,10 +fd7cc65e1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,57.5307,59.8827,8 +fdda158ed,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,60,42.848,45.984,9 +fe8ce67c3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,2,60,50.8213,56.2027,11 +fe8d9ac40,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,53.472,54.096,6 +fea6b438a,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,43.5787,45.7653,8 +ff2eb9ce5,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,60,15.2267,16.0213,6 +ffb8d8391,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,60,14.3467,16.6987,8 +ffb9a7b9a,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,60,40.32,41.0133,6 \ No newline at end of file diff --git a/dataset.py b/dataset.py new file mode 100644 index 0000000..441efaa --- /dev/null +++ b/dataset.py @@ -0,0 +1,64 @@ +from torch.utils.data import Dataset,DataLoader +import pandas as pd +from iterstrat.ml_stratifiers import MultilabelStratifiedKFold +import numpy as np +import h5py +import librosa +import cv2 +import torch +from tqdm import tqdm +import os +from albumentations import Compose +from albumentations.pytorch import ToTensorV2 + +label_cols = ["species_"+str(m) for m in range(24)] + +def h5read(path): + hfile = h5py.File(path,'r') + return np.array(hfile.get('pixels')) + +def label_gen(): + label_dict = {} + files = data.recording_id.unique().tolist() + for f in files: + labels = np.zeros(24) + sets = group.get_group(f) + tmp = sets.species_id.unique() + for i in tmp: + labels[i] = 1. + + label_dict[f] = labels + return label_dict + + +class AudioData(Dataset): + + def __init__(self,records,targets,root_dir,transforms=None): + + self.root_dir = root_dir + self.targets = targets + self.records = records + self.transforms = transforms + + #print(self.records) + + def __len__(self): + return len(self.records) + + def __getitem__(self,idx): + + + img_arr = h5read(os.path.join(self.root_dir,self.records[idx]+'.h5')) + label = self.targets[idx] + + assert img_arr.shape[2] == 3 + if self.transforms is not None: + image = self.transforms(image=img_arr)['image'] + + + + return image,torch.Tensor(label) + + +img = h5read("/home/lustbeast/AudioClass/Dataset/rfcx-species-audio-detection/h5/0a350d11c.h5") +print(img.shape) \ No newline at end of file diff --git a/main.py b/main.py new file mode 100644 index 0000000..f5c15f3 --- /dev/null +++ b/main.py @@ -0,0 +1,60 @@ +import argparse +import librosa +import os +import h5py +from glob import glob +import numpy as np +from tqdm import tqdm +from spectro import wave_to_spec +import pandas as pd + + +def check_and_create(path): + if os.path.isdir(path): + print("Path already exists") + else: + os.makedirs(path) + + +def save_spec(path,offset=None,dur=None,save_format=".npy",save_path=None): + check_and_create(save_path) + for i in tqdm(range(len(path))): + filename = path[i].split("/")[-1].split('.')[0] + mels = wave_to_spec(path[i],offset=offset,duration=dur) + if save_format == '.npy': + np.save(os.path.join(save_path,filename+save_format),mels) + elif save_format == '.h5': + h5fil = h5py.File(os.path.join(save_path,filename+save_format),'w') + h5fil.create_dataset('pixels',data=mels) + h5fil.close() + +if __name__ == "__main__": + + + parser = argparse.ArgumentParser() + parser.add_argument("--csv_path", help="The Path to the csv file.") + parser.add_argument("--root_dir", help="The root dir of dataset.") + parser.add_argument("--format", help="Data Format") + parser.add_argument("--save_format",help="data format to save") + parser.add_argument("--save_path",help="where to save") + + + args = parser.parse_args() + paths = args.csv_path + save_as = args.save_format + save_path = args.save_path + root_dir = args.root_dir + + data = pd.read_csv(paths) + #print(len(data)) + check_and_create(save_path) + for n in tqdm(range(len(data))): + rid = data.recording_id.iloc[n] + p = os.path.join(root_dir,rid+args.format) + mel = wave_to_spec(p,offset=data.t_min.iloc[n],duration=data.duration.iloc[n]) + if save_as == ".h5": + h5fil = h5py.File(os.path.join(save_path,rid+save_as)) + h5fil.create_dataset("pixels",data=mel) + h5fil.close() + elif save_as == ".npy": + np.save(os.path.join(root_dir,rid+save_as),arr=mel) \ No newline at end of file diff --git a/model.py b/model.py new file mode 100644 index 0000000..f6eef33 --- /dev/null +++ b/model.py @@ -0,0 +1,88 @@ +import torch.nn as nn +import torch.nn.functional as F +import torch +from torchvision import models +import numpy as np +import timm +import h5py +from efficientnet_pytorch import EfficientNet + + + +class custom_effnet(nn.Module): + def __init__(self): + super(custom_effnet,self).__init__() + self.model = EfficientNet.from_pretrained('efficientnet-b3') + self.model._conv_stem.in_channels = 1 + weight = self.model._conv_stem.weight.mean(1,keepdim=True) + self.model._conv_stem.weight = torch.nn.Parameter(weight) + print(self.model) + num_ftrs = self.model.classifier.in_features + self.model.classifier = nn.Linear(num_ftrs,24) + + def forward(self,x): + return self.model(x) + +class custom_resnet(nn.Module): + def __init__(self): + super(custom_resnet,self).__init__() + self.model = models.resnet18(pretrained=True) + num_ftrs = self.model.fc.in_features + self.model.fc = nn.Linear(num_ftrs,24) + + def forward(self,x): + return self.model(x) + +class ConvMod(nn.Module): + def __init__(self,in_channels,out_channels,kernel_size,act=True,strides=1): + super(ConvMod,self).__init__() + self.conv = nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size=kernel_size,stride=strides) + self.bn = nn.BatchNorm2d(out_channels) + self.act = act + + def forward(self,x): + if self.act is True: + x = F.relu(self.bn(self.conv(x))) + else: + x = self.bn(self.conv(x)) + + return x + +class CNN_14(nn.Module): + def __init__(self,in_channels,out_channels,kernel_size): + super(CNN_14,self).__init__() + self.conv1 = nn.Sequential( + ConvMod(in_channels=in_channels,out_channels=out_channels,kernel_size=kernel_size), + ConvMod(64,64,kernel_size=kernel_size) + ) + + self.conv2 = nn.Sequential( + ConvMod(64,128,kernel_size=kernel_size), + ConvMod(128,128,kernel_size=kernel_size) + ) + self.conv3 = nn.Sequential( + ConvMod(128,256,kernel_size=kernel_size), + ConvMod(256,256,kernel_size=kernel_size) + + ) + self.conv4 = nn.Sequential( + ConvMod(256,512,kernel_size=kernel_size), + ConvMod(512,512,kernel_size=kernel_size) + ) + self.pool = nn.AvgPool2d(kernel_size=(2,2)) + self.linear = nn.Linear(512,512) + self.classifier = nn.Linear(512,24) + def forward(self,x): + x = self.conv1(x) + x = self.pool(x) + x = self.conv2(x) + x = self.pool(x) + x = self.conv3(x) + x = self.pool(x) + x = self.conv4(x) + x = F.adaptive_avg_pool2d(x,(1,1)) + x = x.view(-1,512) + x = self.classifier(x) + return x + + diff --git a/past.py b/past.py new file mode 100644 index 0000000..bfb1a30 --- /dev/null +++ b/past.py @@ -0,0 +1,30 @@ +df = pd.DataFrame.from_dict(label_gen(),orient='index').reset_index() +df.columns = ['recording_id']+['species_'+str(n) for n in range(24)] +label_cols = [f"species_"+str(m) for m in range(24)] + +mst = MultilabelStratifiedKFold(n_splits=5) +X = df.recording_id.values +y = df[label_cols].values +df['kfold'] = -1 +for i,(train_ind,val_ind) in enumerate(mst.split(X,y)): + + df.loc[val_ind,'kfold'] = i + +df.to_csv("RFCX_kfold.csv",index=False) + + + +dur_sample = [] +data = pd.read_csv("RFCX_kfold.csv") +org_data = pd.read_csv("/home/lustbeast/AudioClass/Dataset/rfcx-species-audio-detection/train_tp.csv") +org_data = org_data.groupby("recording_id").agg({'t_min':lambda x:min(x),'t_max':lambda x:max(x)}).reset_index() +org_data['duration'] = org_data['t_max'] - org_data["t_min"] +org_data['duration'] = np.ceil(org_data.duration.values)+5 +data = data.merge(org_data,on="recording_id",how='left') +data['dur_sample'] = -1 +for i in tqdm(range(len(data))): + song_name = os.path.join("/home/lustbeast/AudioClass/Dataset/rfcx-species-audio-detection/train",data.loc[i,"recording_id"]+".flac") + song,sr = librosa.load(song_name,sr=None) + durs = song.shape[0] / sr + data['dur_sample'].iloc[i] = durs +data.to_csv("RFCX_kfold.csv") diff --git a/spectro.py b/spectro.py new file mode 100644 index 0000000..7cb75b7 --- /dev/null +++ b/spectro.py @@ -0,0 +1,38 @@ +import h5py +import librosa +import cv2 +import numpy as np + +class params: + + sampling_rate = 48000 + mel_bins = 128 + fmin = 20 + fmax = sampling_rate // 2 + +def mono_to_color(x,eps=1e-6): + # X = np.stack([x,x,x],axis=-1) + mean = x.mean() + x = x-mean + std = x.std() + Xstd = X / std+eps + _min,_max = Xstd.min(),Xstd.max() + norm_max,norm_min = _max,_min + if (_max - _min) > eps: + V = Xstd + V[Vnorm_max] = norm_max + V = 255 * (V - norm_min) / (norm_max - norm_min) + V = V.astype(np.uint8) + else: + V = np.zeros_like(Xstd,dtype=np.uint8) + + return V + +def wave_to_spec(path,offset=None,duration=None): + + audio,sr = librosa.load(path,sr=params.sampling_rate,offset=offset,duration=duration) + melspec = librosa.feature.melspectrogram(y=audio,sr=sr,n_mels=params.mel_bins,fmin=params.fmin,fmax=params.fmax) + melspec = librosa.power_to_db(melspec).astype(np.float32) + melspec = mono_to_color(melspec) + return melspec \ No newline at end of file diff --git a/train.py b/train.py new file mode 100644 index 0000000..8343ee6 --- /dev/null +++ b/train.py @@ -0,0 +1,121 @@ +import torch.nn as nn +import numpy as np +import os +import pandas as pd +import random +import torch +import torch.nn.functional as F +from dataset import AudioData +from torch.utils.data import DataLoader +import argparse +from tqdm import tqdm +from albumentations import Compose,Resize,Normalize +from albumentations.pytorch import ToTensorV2 +import torch.optim as optim +from model import CNN_14,custom_effnet,custom_resnet +from torch.cuda.amp import autocast,GradScaler +from sklearn.metrics import label_ranking_average_precision_score + + +scaler = GradScaler() +loss_tr = nn.BCEWithLogitsLoss() +loss_val = nn.BCEWithLogitsLoss() +label_cols = ["species_"+str(m) for m in range(24)] + +def seed_everything(seed=2021): + np.random.seed(seed) + random.seed(seed) + os.environ['PYTHONHASHSEED'] = str(seed) + torch.manual_seed(seed) + torch.backends.cudnn.benchmark = True + torch.backends.cudnn.deterministic = True + + + +def train_loop(epoch,dataloader,model,optimizer,loss_fn,accum_iter=1,scheduler=None,device="cuda:0"): + running_loss = 0.0 + imbar = tqdm(enumerate(dataloader),total=len(dataloader)) + for step,(img,label) in imbar: + img = img.to(device).float() + label = label.to(device).float() + + #Forward Pass + with autocast(): + output = model(img) + loss = loss_fn(output,label) + if accum_iter>1: + loss = loss/accum_iter + + scaler.scale(loss).backward() + running_loss += loss.item() + + if((step+1) % accum_iter == 0) or((step+1) == len(dataloader)): + scaler.step(optimizer) + scaler.update() + optimizer.zero_grad() + + description = f"Epoch: {epoch} Loss: {running_loss/len(dataloader):.4f}" + print(description) + + if scheduler is not None: + scheduler.step() + + +def val_loop(epoch,dataloader,model,loss_fn): + model.eval() + val_loss = 0.0 + val_lwlrap = 0.0 + imbar = tqdm(enumerate(dataloader),total=len(dataloader)) + for step,(img,targets) in imbar: + img = img.to("cuda:0").float() + targets = targets.to("cuda:0").float() + with torch.no_grad(): + outs = model(img) + loss = loss_fn(outs,targets) + val_loss += loss + lwlrap = label_ranking_average_precision_score(y_score=outs.sigmoid().cpu(),y_true=targets.cpu()) + val_lwlrap += lwlrap + + print(f"Val_Loss: {val_loss/len(dataloader):.4f} Val_LWLRAP: {val_lwlrap/len(dataloader)}") + + +if __name__ == '__main__': + + parser = argparse.ArgumentParser() + parser.add_argument("--epochs",help="Number of iterations to train the model") + parser.add_argument("--data_path",help="Root Dir of the folder containing the data files") + parser.add_argument("--csv_path",help="Train csv path") + parser.add_argument("--fold",help="Fold number to train") + parser.add_argument("--batch_size",help="Batch size to train with") + parser.add_argument("--lr",help='Learning Rate') + parser.add_argument("--device",help='CPU or CUDA') + parser.add_argument("--Grad_Accum",help="Gradient Accumulation") + + + args = parser.parse_args() + num_epochs = int(args.epochs) + data_path = args.data_path + lr = args.lr + device = args.device + accum_iter = int(args.Grad_Accum) + + seed_everything() + + data = pd.read_csv(args.csv_path) + df_train,df_valid = data[data.kfold != int(args.fold)].reset_index(drop=True),data[data.kfold == int(args.fold)].reset_index(drop=True) + #print(df_valid) + df_train_tar = df_train[label_cols].values + df_valid_tar = df_valid[label_cols].values + traindata = AudioData(root_dir=data_path,targets=df_train_tar,records=df_train.recording_id.values,transforms=Compose([Resize(200,600),Normalize(mean=0.485,std=0.229),ToTensorV2()])) + valdata = AudioData(root_dir=data_path,targets=df_valid_tar,records=df_valid.recording_id.values,transforms=Compose([Resize(200,600),Normalize(mean=0.485,std=0.229),ToTensorV2()])) + trainloader = DataLoader(traindata,batch_size=int(args.batch_size),num_workers=4) + valloader = DataLoader(valdata,batch_size=int(args.batch_size),num_workers=4) + model = custom_resnet().to(device) + opt = optim.Adam(model.parameters(),lr=float(lr),weight_decay=1e-6) + + print("***** Model Training Started *****") + for i in range(num_epochs): + print(f"Epochs: {i}/{num_epochs}") + train_loop(i,trainloader,model,opt,loss_tr,accum_iter,device=device) + val_loop(i,valloader,model,loss_val) +