-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess.py
69 lines (65 loc) · 3.04 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import csv
import os
import glob
import io
from bs4 import BeautifulSoup
from lib import gnormplus
import sys
# Download GNormPlus results for each PMID and extract abstract and gene annotations
with open('data/pmid_list.txt') as pmid_list:
for pmid in pmid_list:
xml = gnormplus.get_xml(pmid.rstrip())
genes = gnormplus.extract_genes(xml)
# We don't need to do anything with abstracts that don't contain gnormplus annotations --> no genes, no use
if len(genes) == 0:
continue
with io.open('data/abstracts/'+pmid.rstrip()+'.txt', 'w', encoding='utf-8') as abstract:
abstract.write(gnormplus.extract_text(xml))
with io.open('data/brat-input/'+pmid.rstrip()+'.ann', 'w', encoding='utf-8') as ann_file:
for gene in genes:
gene_id = gene.id + '.' + str(gene.start) # We have to append start offset to make sure ids stay unique.
ann_file.write("TG"+gene_id+ "\tGene " + str(gene.start) + " " + str(gene.end) + "\t" + gene.name + "\n")
# Run Noble-Coder on the abstracts
os.system("java -jar tools/NobleCoder-1.0.jar -terminology go -input data/abstracts/ -output data/noble-coder-output/ -search 'precise-match'")
# Append results from Noble-Coder to .ann files, save number of functions for later
# Skip obsolete GO terms
function_counts = {} # pmid->n_functions
with open('resources/obsolete_go_terms.txt') as f:
obsolete_terms = f.read().split("\n")
with open('data/noble-coder-output/RESULTS.tsv', 'rb') as nc_file:
csv_reader = csv.DictReader(nc_file, delimiter="\t")
for line in csv_reader:
pmid = line["Document"].split('.')[0]
print(pmid)
filename = pmid + '.ann'
ann_id = line["Code"][3:]
if 'GO:'+ann_id in obsolete_terms:
continue
ann_names = []
ann_offsets = []
for a in line["Annotations"].split(', '):
word, start = a.split('/')
ann_names.append(word)
end = int(start) + len(word)
ann_offsets.append(start + ' ' + str(end))
with open('data/brat-input/'+filename, 'a') as ann_file: #@TODO performance -don't reopen file for every single line
unique_ann_id = 'TF' + ann_id+'.'+ann_offsets[0].split(' ')[0]
ann_file.write(unique_ann_id + "\tFunction " + ';'.join(ann_offsets) + "\t" + ' '.join(ann_names)+"\n")
#@TODO filter out duplicates(maybe by offset?)
if pmid in function_counts:
function_counts[pmid] += 1
else:
function_counts[pmid] = 1
# Create statistics file
with open('data/statistics.tsv', 'wb') as statistics_file:
csv_writer = csv.writer(statistics_file, delimiter="\t")
csv_writer.writerow(['pmid', 'genes', 'functions', 'words'])
for abstract_file in glob.glob('data/abstracts/*.txt'):
print(abstract_file)
pmid = os.path.split(abstract_file)[1].split('.')[0]
print(pmid)
with open(abstract_file) as fp:
words = len(fp.read().split())
genes = len(BeautifulSoup(io.open('data/gnormplus-output/'+pmid+'.xml', encoding='utf-8'), 'lxml-xml').find_all('annotation'))
f_count = function_counts[pmid] if pmid in function_counts else 0
csv_writer.writerow([pmid, genes, f_count, words])