forked from Snowdar/asv-subtools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputeMin-t-DCF.py
executable file
·232 lines (187 loc) · 5.4 KB
/
computeMin-t-DCF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright xmuspeech (Author:Snowdar 2019-01-10)
# This metric is for ASVspoof Challenge in 2019.
import sys
# Num of data
N_bona_cm=0
N_spoof_cm=0
# Priors
Pi_tar=0.9405
Pi_non=0.0095
Pi_spoof=0.05
# ASV costs
C_miss_asv=1
C_fa_asv=10
# CM costs
C_miss_cm=1
C_fa_cm=10
def load_data(data_path,n):
list=[]
print("Load data from "+data_path+"...")
with open(data_path,'r') as f:
content=f.readlines()
for line in content:
line=line.strip()
data_list=line.split()
if(n!=len(data_list)):
print('[Error] The %s file has no %s fields'%(data_path,n))
exit(1)
list.append(data_list)
return list
def abs(x):
if(x<0):
return -x
else:
return x
def compute_eer(allScores):
numP=0
numN=0
for x in allScores:
if(x[1]=="target"):
x[1]=1
numP=numP+1
elif(x[1]=="nontarget"):
x[1]=0
numN=numN+1
else:
print("[Error in compute_eer()] %s is not target or nontarget in score"%(x[1]))
exit(1)
allScores=sorted(allScores,reverse=False)
numFA=numN
numFR=0
eer=0.0
threshold=0.0
memory=[]
for tuple in allScores:
if(tuple[1]==1):
numFR=numFR+1
else:
numFA=numFA-1
far=numFA*1.0/numN
frr=numFR*1.0/numP
if(far<=frr):
lnow=abs(far-frr)
lmemory=abs(memory[0]-memory[1])
if(lnow<=lmemory):
eer=(far+frr)/2
threshold=tuple[0]
else:
eer=(memory[0]+memory[1])/2
threshold=memory[2]
return eer,threshold
else:
memory=[far,frr,tuple[0]]
def t_DCF_min(dcf):
return min(dcf)
def t_DCF_norm(beta,P_miss_cm,P_fa_cm):
return beta * P_miss_cm + P_fa_cm
def get_rate(x,y):
if(y==0):
return 0
else:
return x*1.0/y
def obtain_asv_error_rates(asv_score,asv_threshold):
N_tar_asv=0
N_non_asv=0
N_spoof_asv=0
count_tar=0
count_non=0
count_spoof=0
for x in asv_score:
if(x[1]=="target"):
N_tar_asv=N_tar_asv+1
if(float(x[2])<asv_threshold):
count_tar=count_tar+1
elif(x[1]=="nontarget"):
N_non_asv=N_non_asv+1
if(float(x[2])>=asv_threshold):
count_non=count_non+1
elif(x[1]=="spoof"):
N_spoof_asv=N_spoof_asv+1
if(float(x[2])<asv_threshold):
count_spoof=count_spoof+1
else:
print("[Error in obtain_asv_error_rates()] %s is not target or nontarget or spoof in score"%(x[1]))
P_miss_asv=get_rate(count_tar,N_tar_asv)
P_fa_asv=get_rate(count_non,N_non_asv)
P_miss_spoof_asv=get_rate(count_spoof,N_spoof_asv)
return P_miss_asv,P_fa_asv,P_miss_spoof_asv
def check():
if(Pi_tar+Pi_non+Pi_spoof!=1):
print("[Error in check()] Pi_tar+Pi_non+Pi_spoof != 1 ")
exit(1)
## main ##
if len(sys.argv)-1 != 2 :
print 'usage: '+sys.argv[0]+' [options] <asv-score> <cm-score>'
exit(1)
"""
asv-score format with every line:
attack-way target/nontarget/spoof score
example:
- target 4.23
- nontarget 1.24
VC_1 spoof 2.55
cm-score format with every line:
bonafide/spoof score
example:
bonafide 2.34
spoof -1.2
"""
asv_score_path=sys.argv[1]
cm_score_path=sys.argv[2]
check()
#- start -#
asv_score_file=load_data(asv_score_path,3)
cm_score_file=load_data(cm_score_path,2)
#- asv -#
asv_score_for_eer=[]
for x in asv_score_file:
if(x[1]=="target" or x[1]=="nontarget"):
asv_score_for_eer.append([float(x[2]),x[1]])
asv_eer,asv_threshold=compute_eer(asv_score_for_eer)
P_miss_asv,P_fa_asv,P_miss_spoof_asv=obtain_asv_error_rates(asv_score_file,asv_threshold)
#- cm -#
cm_score=[]
cm_score_for_eer=[]
for x in cm_score_file:
if(x[0]=="bonafide"):
lable=1
text="target"
N_bona_cm=N_bona_cm+1
elif(x[0]=="spoof"):
lable=0
text="nontarget"
N_spoof_cm=N_spoof_cm+1
else:
print("[Error in main-cm] the lable %s is not bonafide or spoof"%(x[0]))
exit(1)
cm_score.append([float(x[1]),lable])
cm_score_for_eer.append([float(x[1]),text])
cm_eer,cm_threshold=compute_eer(cm_score_for_eer)
#- t-DCF -#
C1=Pi_tar * (C_miss_cm - C_miss_asv * P_miss_asv) - Pi_non * C_fa_asv * P_fa_asv
C2=C_fa_cm * Pi_spoof * (1 - P_miss_spoof_asv)
beta=C1/C2
cm_score=sorted(cm_score,reverse=False)
count_bona=0
count_spoof=N_spoof_cm
dcf=[]
P_miss_cm=count_bona*1.0/N_bona_cm
P_fa_cm=count_spoof*1.0/N_spoof_cm
dcf.append(t_DCF_norm(beta,P_miss_cm,P_fa_cm))
for tuple in cm_score:
if(tuple[1]==1):
count_bona=count_bona+1
else:
count_spoof=count_spoof-1
P_miss_cm=count_bona*1.0/N_bona_cm
P_fa_cm=count_spoof*1.0/N_spoof_cm
dcf.append(t_DCF_norm(beta,P_miss_cm,P_fa_cm))
min_tDCF=t_DCF_min(dcf)
#- print -#
print("\n[Report]")
print("ASV EER=%f%%, threshold=%f"%(asv_eer*100,asv_threshold))
print("ASV Pfa=%f%%, Pmiss=%f%%, 1-Pmiss,spoof=%f%%"%(P_fa_asv*100,P_miss_asv*100,(1-P_miss_spoof_asv)*100))
print("CM EER=%f%%, threshold=%f"%(cm_eer*100,cm_threshold))
print("Final min-tDCF=%f"%(min_tDCF))