forked from Snowdar/asv-subtools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunMultiTaskXvector.py
420 lines (356 loc) · 20.7 KB
/
runMultiTaskXvector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright xmuspeech (Author: Zheng Li 2021-06)
# Apache 2.0
# This is a Launcher for speaker or language - phoneme multi-task learning, based on E-TDNN x-vector.
# Before you start this Launcher, you must ensure that you have already prepared the alginment file for the training set.
import sys, os
import logging
import argparse
import traceback
import time
import math
import numpy as np
import torch
sys.path.insert(0, 'subtools/pytorch')
import libs.egs.egs_multi_task as egs_multi_task #Zheng Li 2021-06-08
import libs.training.optim as optim
import libs.training.lr_scheduler as learn_rate_scheduler
import libs.training.trainer_mt as trainer #Zheng Li 2021-06-08
import libs.support.kaldi_common as kaldi_common
import libs.support.utils as utils
from libs.support.logging_stdout import patch_logging_stream
"""A launcher script with python version (Snowdar's launcher to do experiments w.r.t snowdar-xvector.py).
Python version is gived (rather than Shell) to have more freedom, such as decreasing limitation of parameters that transfering
them to python from shell.
Note, this launcher does not contain dataset preparation, augmentation, extracting acoustic features and back-end scoring etc.
1.See subtools/recipe/voxceleb/runVoxceleb.sh to get complete stages.
2.See subtools/newCopyData.sh, subtools/makeFeatures.sh.sh, subtools/computeVad.sh, subtools/augmentDataByNoise.sh and
subtools/scoreSets.sh and run these script separately before or after running this launcher.
How to modify this launcher:
1.Prepare your kaldi format dataset and model.py (model blueprint);
2.Give the path of dataset, model blueprint, etc. in main parameters field;
3.Change the imported name of model in 'model = model_py.model_name(...)' w.r.t model.py by yourself;
4.Modify any training parameters what you want to change (epochs, optimizer and lr_scheduler etc.);
5.Modify parameters of extracting in stage 4 w.r.t your own training config;
6.Run this launcher.
Conclusion: preprare -> config -> run.
How to run this launcher to train a model:
1.For CPU-based training case. The key option is --use-gpu.
python3 launcher.py --use-gpu=false
2.For single-GPU training case (Default).
python3 launcher.py
3.For DDP-based multi-GPU training case. Note --nproc_per_node is equal to number of gpu id in --gpu-id.
python3 -m torch.distributed.launch --nproc_per_node=2 launcher.py --gpu-id=0,1
4.For Horovod-based multi-GPU training case. Note --np is equal to number of gpu id in --gpu-id.
horovodrun -np 2 launcher.py --gpu-id=0,1
5.For all of above, a runLauncher.sh script has been created to launch launcher.py conveniently.
The key option to use single or multiple GPU is --gpu-id.
The subtools/runPytorchLauncher.sh is a soft symbolic which is linked to subtools/pytorch/launcher/runLauncher.sh,
so just use it.
[ CPU ]
subtools/runPytorchLauncher.sh launcher.py --use-gpu=false
[ Single-GPU ]
(1) Auto-select GPU device
subtools/runPytorchLauncher.sh launcher.py
(2) Specify GPU device
subtools/runPytorchLauncher.sh launcher.py --gpu-id=2
[ Multi-GPU ]
(1) Use DDP solution (Default).
subtools/runPytorchLauncher.sh launcher.py --gpu-id=2,3 --multi-gpu-solution="ddp"
(2) Use Horovod solution.
subtools/runPytorchLauncher.sh launcher.py --gpu-id=2,3 --multi-gpu-solution="horovod"
If you have any other requirements, you could modify the codes in anywhere.
For more details of multi-GPU devolopment, see subtools/README.md.
"""
# Logger
# Change the logging stream from stderr to stdout to be compatible with horovod.
patch_logging_stream(logging.INFO)
logger = logging.getLogger('libs')
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
handler.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s [%(pathname)s:%(lineno)s - "
"%(funcName)s - %(levelname)s ]\n#### %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
# Parser: add this parser to run launcher with some frequent options (really for conveninece).
parser = argparse.ArgumentParser(
description="""Train xvector framework with pytorch.""",
formatter_class=argparse.RawTextHelpFormatter,
conflict_handler='resolve')
parser.add_argument("--stage", type=int, default=3,
help="The stage to control the start of training epoch (default 3).\n"
" stage 0: vad-cmn (preprocess_to_egs.sh).\n"
" stage 1: remove utts (preprocess_to_egs.sh).\n"
" stage 2: get chunk egs (preprocess_to_egs.sh).\n"
" stage 3: training.\n"
" stage 4: extract xvector.")
parser.add_argument("--endstage", type=int, default=5,
help="The endstage to control the endstart of training epoch (default 4).")
parser.add_argument("--train-stage", type=int, default=-1,
help="The stage to control the start of training epoch (default -1).\n"
" -1 -> creating model_dir.\n"
" 0 -> model initialization (e.g. transfer learning).\n"
" >0 -> recovering training.")
parser.add_argument("--force-clear", type=str, action=kaldi_common.StrToBoolAction,
default=False, choices=["true", "false"],
help="Clear the dir generated by preprocess.")
parser.add_argument("--use-gpu", type=str, action=kaldi_common.StrToBoolAction,
default=True, choices=["true", "false"],
help="Use GPU or not.")
parser.add_argument("--gpu-id", type=str, default="",
help="If NULL, then it will be auto-specified.\n"
"If giving multi-gpu like --gpu-id=1,2,3, then use multi-gpu training.")
parser.add_argument("--multi-gpu-solution", type=str, default="ddp",
choices=["ddp", "horovod"],
help="if number of gpu_id > 1, this option will be valid to init a multi-gpu solution.")
parser.add_argument("--benchmark", type=str, action=kaldi_common.StrToBoolAction,
default=True, choices=["true", "false"],
help="If true, save training time but require a little more gpu-memory.")
parser.add_argument("--run-lr-finder", type=str, action=kaldi_common.StrToBoolAction,
default=False, choices=["true", "false"],
help="If true, run lr finder rather than training.")
parser.add_argument("--sleep", type=int, default=0,
help="The waiting time to launch a launcher.")
parser.add_argument("--local_rank", type=int, default=0,
help="Do not delete it when using DDP-based multi-GPU training.\n"
"It is important for torch.distributed.launch.")
parser.add_argument("--port", type=int, default=29500,
help="This port is used for DDP solution in multi-GPU training.")
args = parser.parse_args()
##
######################################################### PARAMS ########################################################
##
##--------------------------------------------------##
## Control options
stage = max(0, args.stage)
endstage = min(5, args.endstage)
train_stage = max(-1, args.train_stage)
##--------------------------------------------------##
## Preprocess options
force_clear=args.force_clear
preprocess_nj = 20
cmn = True # Traditional cmn process.
chunk_size = 100
limit_utts = 8
sample_type="speaker_balance" # sequential | speaker_balance
chunk_num=-1 # -1 means using scale, 0 means using max and >0 means itself.
overlap=0.1
scale=1.5 # Get max / num_spks * scale for every speaker.
valid_split_type="--total-spk" # --total-spk or --default
valid_utts = 1024
valid_chunk_num_every_utt = 2
##--------------------------------------------------##
## Training options
use_gpu = args.use_gpu # Default true.
benchmark = args.benchmark # If true, save much training time but require a little more gpu-memory.
gpu_id = args.gpu_id # If NULL, then it will be auto-specified.
run_lr_finder = args.run_lr_finder
egs_params = {
"aug":None, # None or specaugment. If use aug, you should close the aug_dropout which is in model_params.
"aug_params":{"frequency":0.2, "frame":0.2, "rows":4, "cols":4, "random_rows":True,"random_cols":True}
}
loader_params = {
"use_fast_loader":True, # It is a queue loader to prefetch batch and storage.
"max_prefetch":10,
"batch_size":512,
"shuffle":True,
"num_workers":2,
"pin_memory":False,
"drop_last":True,
}
# Difine model_params by model_blueprint w.r.t your model's __init__(model_params).
model_params = {
"extend":True, "SE":False, "se_ratio":4, "training":True, "extracted_embedding":"far","mt_alpha":0.3,
"aug_dropout":0., "hidden_dropout":0.,
"dropout_params":{"type":"default", "start_p":0., "dim":2, "method":"uniform",
"continuous":False, "inplace":True},
"tdnn_layer_params":{"nonlinearity":'relu', "nonlinearity_params":{"inplace":True},
"bn-relu":False,
"bn":True,
"bn_params":{"momentum":0.5, "affine":False, "track_running_stats":True}},
"pooling":"statistics", # statistics, lde, attentive, multi-head, multi-resolution
"pooling_params":{"num_nodes":1500,
"num_head":1,
"share":True,
"affine_layers":1,
"hidden_size":64,
"context":[0],
"temperature":False,
"fixed":True
},
"tdnn6":True,
"tdnn7_params":{"nonlinearity":"default", "bn":True},
"margin_loss":False,
"margin_loss_params":{"method":"am", "m":0.2, "feature_normalize":True,
"s":30, "mhe_loss":False, "mhe_w":0.01},
"use_step":False,
"step_params":{"T":None,
"m":False, "lambda_0":0, "lambda_b":1000, "alpha":5, "gamma":1e-4,
"s":False, "s_tuple":(30, 12), "s_list":None,
"t":False, "t_tuple":(0.5, 1.2),
"p":False, "p_tuple":(0.5, 0.1)}
}
optimizer_params = {
"name":"adamW",
"learn_rate":0.001,
"beta1":0.9,
"beta2":0.999,
"beta3":0.999,
"weight_decay":3e-1, # Should be large for decouped weight decay (adamW) and small for L2 regularization (sgd, adam).
"lookahead.k":5,
"lookahead.alpha":0., # 0 means not using lookahead and if used, suggest to set it as 0.5.
"gc":False # If true, use gradient centralization.
}
lr_scheduler_params = {
"name":"warmR",
"warmR.lr_decay_step":0, # 0 means decay after every epoch and 1 means every iter.
"warmR.T_max":3,
"warmR.T_mult":2,
"warmR.factor":1.0, # The max_lr_decay_factor.
"warmR.eta_min":4e-8,
"warmR.log_decay":False
}
epochs = 21 # Total epochs to train. It is important.
report_times_every_epoch = None
report_interval_iters = 100 # About validation computation and loss reporting. If report_times_every_epoch is not None,
# then compute report_interval_iters by report_times_every_epoch.
suffix = "params" # Used in saved model file.
##--------------------------------------------------##
## Other options
exist_model="" # Use it in transfer learning.
##--------------------------------------------------##
## Main params
traindata="data/mfcc_20_5.0/ap19_task_1_train_aug"
egs_dir="exp/ap19_task_1_train_aug/egs" + "_" + sample_type + "_max"
model_blueprint = "subtools/pytorch/model/multi_task_xvector_fix.py"
model_dir = "exp/multi_task_olr_mfcc"
ali_dir="/work/kaldi/egs/thchs30/s5/exp/tri4b/ali_thchs30_ap19_task_1_train" # the direction of alignment files, Zheng Li 2021-06-08
subsampling="false" # str, If the chain alignment was uesed, you should turn subsampling = true, Zheng Li 2021-06-08
##--------------------------------------------------##
##
######################################################### START #########################################################
##
#### Set seed
utils.set_all_seed(1024)
##
#### Init environment
# It is used for multi-gpu training if used (number of gpu-id > 1).
# And it will do nothing for single-GPU training.
utils.init_multi_gpu_training(args.gpu_id, args.multi_gpu_solution, args.port)
##
#### Set sleep time for a rest
# Use it to run a launcher with a countdown function when there are no extra GPU memory
# but you really want to go to bed and know when the GPU memory will be free.
if args.sleep > 0 and utils.is_main_training():
logger.info("This launcher will sleep {}s before starting...".format(args.sleep))
time.sleep(args.sleep)
##
#### Auto-config params
# If multi-GPU used, it will auto-scale learning rate by multiplying number of processes.
optimizer_params["learn_rate"] = utils.auto_scale_lr(optimizer_params["learn_rate"])
# It is used for model.step() defined in model blueprint.
if lr_scheduler_params["name"] == "warmR" and model_params["use_step"]:
model_params["step_params"]["T"]=(lr_scheduler_params["warmR.T_max"], lr_scheduler_params["warmR.T_mult"])
##
#### Preprocess
if stage <= 3 and endstage >= 0 and utils.is_main_training():
# Here only give limited options because it is not convenient.
# Suggest to pre-execute this shell script to make it freedom and then continue to run this launcher.
kaldi_common.execute_command("sh subtools/pytorch/pipeline/multitask/preprocess_to_egs.sh "
"--subsampling {subsampling} --stage {stage} --endstage {endstage} "
"--nj {nj} --cmn {cmn} --limit-utts {limit_utts} --min-chunk {chunk_size} "
"--sample-type {sample_type} --chunk-num {chunk_num} --scale {scale} --force-clear {force_clear} "
"--valid-num-utts {valid_utts} --valid-chunk-num {valid_chunk_num_every_utt} "
"{traindata} {egs_dir} {ali_dir}".format(subsampling=subsampling,stage=stage, endstage=endstage, nj=preprocess_nj,
cmn=str(cmn).lower(), limit_utts=limit_utts, chunk_size=chunk_size, sample_type=sample_type,
chunk_num=chunk_num, scale=scale, force_clear=str(force_clear).lower(), valid_utts=valid_utts,
valid_chunk_num_every_utt=valid_chunk_num_every_utt, traindata=traindata, egs_dir=egs_dir, ali_dir=ali_dir))
#### Train model
if stage <= 4 <= endstage:
if utils.is_main_training(): logger.info("Get model_blueprint from model directory.")
# Save the raw model_blueprint in model_dir/config and get the copy of model_blueprint path.
model_blueprint = utils.create_model_dir(model_dir, model_blueprint, stage=train_stage)
if utils.is_main_training(): logger.info("Load egs to bunch.")
# The dict [info] contains feat_dim and num_targets.
bunch, info = egs_multi_task.BaseBunch.get_bunch_from_egsdir(egs_dir, egs_params, loader_params)
if utils.is_main_training(): logger.info("Create model from model blueprint.")
# Another way: import the model.py in this python directly, but it is not friendly to the shell script of extracting and
# I don't want to change anything about extracting script when the model.py is changed.
model_py = utils.create_model_from_py(model_blueprint)
model = model_py.Xvector(info["feat_dim"], info["num_targets"], info["num_phones"], **model_params) #Zheng Li 2021-06-08
# If multi-GPU used, then batchnorm will be converted to synchronized batchnorm, which is important
# to make peformance stable.
# It will change nothing for single-GPU training.
model = utils.convert_synchronized_batchnorm(model)
if utils.is_main_training(): logger.info("Define optimizer and lr_scheduler.")
optimizer = optim.get_optimizer(model, optimizer_params)
lr_scheduler = learn_rate_scheduler.LRSchedulerWrapper(optimizer, lr_scheduler_params)
# Record params to model_dir
utils.write_list_to_file([egs_params, loader_params, model_params, optimizer_params,
lr_scheduler_params], model_dir+'/config/params.dict')
if utils.is_main_training(): logger.info("Init a simple trainer.")
# Package(Elements:dict, Params:dict}. It is a key parameter's package to trainer and model_dir/config/.
package = ({"data":bunch, "model":model, "optimizer":optimizer, "lr_scheduler":lr_scheduler},
{"model_dir":model_dir, "model_blueprint":model_blueprint, "exist_model":exist_model,
"start_epoch":train_stage, "epochs":epochs, "use_gpu":use_gpu, "gpu_id":gpu_id, "max_change":10.,
"benchmark":benchmark, "suffix":suffix, "report_times_every_epoch":report_times_every_epoch,
"report_interval_iters":report_interval_iters, "record_file":"train.csv"})
trainer = trainer.MultitaskTrainer(package) #Zheng Li 2021-06-08
if run_lr_finder and utils.is_main_training():
trainer.run_lr_finder("lr_finder.csv", init_lr=1e-8, final_lr=10., num_iters=2000, beta=0.98)
endstage = 3 # Do not start extractor.
else:
trainer.run()
#### Extract xvector
if stage <= 5 <= endstage and utils.is_main_training():
# There are some params for xvector extracting.
data_root = "data" # It contains all dataset just like Kaldi recipe.
prefix = "mfcc_20_5.0" # For to_extracted_data.
to_extracted_positions = ["far"] # Define this w.r.t extracted_embedding param of model_blueprint.
to_extracted_data = ["ap19_task_1_train_aug", "task_1"] # All dataset should be in dataroot/prefix.
to_extracted_epochs = ["21"] # It is model's name, such as 10.params or final.params (suffix is w.r.t package).
nj = 5
force = False
use_gpu = True
gpu_id = ""
sleep_time = 10
# Run a batch extracting process.
try:
for position in to_extracted_positions:
# Generate the extracting config from nnet config where
# which position to extract depends on the 'extracted_embedding' parameter of model_creation (by my design).
model_blueprint, model_creation = utils.read_nnet_config("{0}/config/nnet.config".format(model_dir))
model_creation = model_creation.replace("training=True", "training=False") # To save memory without loading some independent components.
model_creation = model_creation.replace(model_params["extracted_embedding"], position)
extract_config = "{0}.extract.config".format(position)
utils.write_nnet_config(model_blueprint, model_creation, "{0}/config/{1}".format(model_dir, extract_config))
for epoch in to_extracted_epochs:
model_file = "{0}.{1}".format(epoch, suffix)
point_name = "{0}_epoch_{1}".format(position, epoch)
# If run a trainer with background thread (do not be supported now) or run this launcher extrally with stage=4
# (it means another process), then this while-listen is useful to start extracting immediately (but require more gpu-memory).
model_path = "{0}/{1}".format(model_dir, model_file)
while True:
if os.path.exists(model_path):
break
else:
time.sleep(sleep_time)
for data in to_extracted_data:
datadir = "{0}/{1}/{2}".format(data_root, prefix, data)
outdir = "{0}/{1}/{2}".format(model_dir, point_name, data)
# Use a well-optimized shell script (with multi-processes) to extract xvectors.
# Another way: use subtools/splitDataByLength.sh and subtools/pytorch/pipeline/onestep/extract_embeddings.py
# with python's threads to extract xvectors directly, but the shell script is more convenient.
kaldi_common.execute_command("sh subtools/pytorch/pipeline/extract_xvectors_for_pytorch.sh "
"--model {model_file} --cmn {cmn} --nj {nj} --use-gpu {use_gpu} --gpu-id '{gpu_id}' "
" --force {force} --nnet-config config/{extract_config} "
"{model_dir} {datadir} {outdir}".format(model_file=model_file, cmn=str(cmn).lower(), nj=nj,
use_gpu=str(use_gpu).lower(), gpu_id=gpu_id, force=str(force).lower(), extract_config=extract_config,
model_dir=model_dir, datadir=datadir, outdir=outdir))
except BaseException as e:
if not isinstance(e, KeyboardInterrupt):
traceback.print_exc()
sys.exit(1)
#### Congratulate! All done.