From 9c26b291fabad663656e1e52d125134564f539d1 Mon Sep 17 00:00:00 2001 From: Stefano Sinigardi Date: Fri, 9 Jul 2021 13:50:38 +0200 Subject: [PATCH] fix python main module to be compiled with recent build scripts (#7876) * fix python main module to be compiled with recent build scripts * fixes for posix systems --- .gitignore | 2 ++ darknet.py | 78 ++++++++++-------------------------------------------- 2 files changed, 16 insertions(+), 64 deletions(-) diff --git a/.gitignore b/.gitignore index 916cfb88461..a1d890429b3 100644 --- a/.gitignore +++ b/.gitignore @@ -9,6 +9,7 @@ *.dll *.lib *.dylib +*.pyc mnist/ data/ caffe/ @@ -39,6 +40,7 @@ build/.ninja_log build/Makefile */vcpkg-manifest-install.log build.log +__pycache__/ # OS Generated # .DS_Store* diff --git a/darknet.py b/darknet.py index ad526f99d95..698f0469ad5 100644 --- a/darknet.py +++ b/darknet.py @@ -1,26 +1,13 @@ -#!python3 +#!/usr/bin/env python3 + """ Python 3 wrapper for identifying objects in images -Requires DLL compilation - -Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll". - -On a GPU system, you can force CPU evaluation by any of: - -- Set global variable DARKNET_FORCE_CPU to True -- Set environment variable CUDA_VISIBLE_DEVICES to -1 -- Set environment variable "FORCE_CPU" to "true" -- Set environment variable "DARKNET_PATH" to path darknet lib .so (for Linux) - +Running the script requires opencv-python to be installed (`pip install opencv-python`) Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`) - -Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py -Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py - -@author: Philip Kahn -@date: 20180503 +Use pip3 instead of pip on some systems to be sure to install modules for python3 """ + from ctypes import * import math import random @@ -178,51 +165,17 @@ def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45 return sorted(predictions, key=lambda x: x[1]) -# lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) -# lib = CDLL("libdarknet.so", RTLD_GLOBAL) -hasGPU = True -if os.name == "nt": +if os.name == "posix": + cwd = os.path.dirname(__file__) + lib = CDLL(cwd + "/libdarknet.so", RTLD_GLOBAL) +elif os.name == "nt": cwd = os.path.dirname(__file__) os.environ['PATH'] = cwd + ';' + os.environ['PATH'] - winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll") - winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll") - envKeys = list() - for k, v in os.environ.items(): - envKeys.append(k) - try: - try: - tmp = os.environ["FORCE_CPU"].lower() - if tmp in ["1", "true", "yes", "on"]: - raise ValueError("ForceCPU") - else: - print("Flag value {} not forcing CPU mode".format(tmp)) - except KeyError: - # We never set the flag - if 'CUDA_VISIBLE_DEVICES' in envKeys: - if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0: - raise ValueError("ForceCPU") - try: - global DARKNET_FORCE_CPU - if DARKNET_FORCE_CPU: - raise ValueError("ForceCPU") - except NameError as cpu_error: - print(cpu_error) - if not os.path.exists(winGPUdll): - raise ValueError("NoDLL") - lib = CDLL(winGPUdll, RTLD_GLOBAL) - except (KeyError, ValueError): - hasGPU = False - if os.path.exists(winNoGPUdll): - lib = CDLL(winNoGPUdll, RTLD_GLOBAL) - print("Notice: CPU-only mode") - else: - # Try the other way, in case no_gpu was compile but not renamed - lib = CDLL(winGPUdll, RTLD_GLOBAL) - print("Environment variables indicated a CPU run, but we didn't find {}. Trying a GPU run anyway.".format(winNoGPUdll)) + lib = CDLL("darknet.dll", RTLD_GLOBAL) else: - lib = CDLL(os.path.join( - os.environ.get('DARKNET_PATH', './'), - "libdarknet.so"), RTLD_GLOBAL) + print("Unsupported OS") + exit + lib.network_width.argtypes = [c_void_p] lib.network_width.restype = c_int lib.network_height.argtypes = [c_void_p] @@ -235,10 +188,7 @@ def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45 predict.argtypes = [c_void_p, POINTER(c_float)] predict.restype = POINTER(c_float) -if hasGPU: - set_gpu = lib.cuda_set_device - set_gpu.argtypes = [c_int] - +set_gpu = lib.cuda_set_device init_cpu = lib.init_cpu make_image = lib.make_image