-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathvis_segmentation_label.py
112 lines (90 loc) · 4.22 KB
/
vis_segmentation_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import tqdm
import argparse
from copy import deepcopy
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from data.dataset import HDMapNetSemanticDataset
def redundant_filter(mask, kernel=25):
M, N = mask.shape
for i in range(M):
for j in range(N):
if mask[i, j] != 0:
var = deepcopy(mask[i, j])
local_mask = mask[
max(0, i - kernel // 2):min(M, i + kernel // 2 + 1),
max(0, j - kernel // 2):min(N, j + kernel // 2 + 1)]
local_mask[local_mask == mask[i, j]] = 0
mask[i, j] = var
return mask
def vis_label(dataroot, version, xbound, ybound, thickness, angle_class):
data_conf = {
'image_size': (900, 1600),
'xbound': xbound,
'ybound': ybound,
'thickness': thickness,
'angle_class': angle_class,
}
color_map = np.random.randint(0, 256, (256, 3))
color_map[0] = np.array([0, 0, 0])
dataset = HDMapNetSemanticDataset(version=version, dataroot=dataroot, data_conf=data_conf, is_train=False)
gt_path = os.path.join(dataroot, 'samples', 'semanticGT')
if not os.path.exists(gt_path):
os.mkdir(gt_path)
for idx in tqdm.tqdm(range(dataset.__len__())):
rec = dataset.nusc.sample[idx]
semantic_mask, instance_mask, forward_mask, backward_mask, _ = dataset.get_semantic_map(rec)
lidar_top_path = dataset.nusc.get_sample_data_path(rec['data']['LIDAR_TOP'])
base_path = lidar_top_path.split('/')[-1].replace('__LIDAR_TOP__', '_').split('.')[0]
base_path = os.path.join(gt_path, base_path)
semantic_path = os.path.join(base_path, "SEMANTIC.png")
instance_path = os.path.join(base_path, "INSTANCE.png")
direction_path = os.path.join(base_path, "DIRECTION.png")
if not os.path.exists(base_path):
os.mkdir(base_path)
semantic_mask = semantic_mask.astype('uint8') * 255
semantic_mask = np.moveaxis(semantic_mask, 0, -1)
Image.fromarray(semantic_mask).save(semantic_path)
instance_mask = instance_mask.sum(0).astype('uint8')
instance_color_mask = color_map[instance_mask].astype('uint8')
Image.fromarray(instance_color_mask).save(instance_path)
fig = plt.figure(figsize=(4, 2))
ax = fig.add_axes([0, 0, 1, 1])
ax.axis('off')
plt.xlim(0, 400)
plt.ylim(200, 0)
R = 1
arr_width = 1
forward_mask = redundant_filter(forward_mask)
coords = np.where(forward_mask != 0)
coords = np.stack([coords[1], coords[0]], -1)
for coord in coords:
x = coord[0]
y = coord[1]
angle = np.deg2rad((forward_mask[y, x] - 1) * 10)
dx = R * np.cos(angle)
dy = R * np.sin(angle)
plt.arrow(x=x+2, y=y+2, dx=dx, dy=dy, width=arr_width, head_width=3 * arr_width, head_length=5 * arr_width, facecolor=(1, 0, 0, 0.5))
backward_mask = redundant_filter(backward_mask)
coords = np.where(backward_mask != 0)
coords = np.stack([coords[1], coords[0]], -1)
for coord in coords:
x = coord[0]
y = coord[1]
angle = np.deg2rad((backward_mask[y, x] - 1) * 10)
dx = R * np.cos(angle)
dy = R * np.sin(angle)
plt.arrow(x=x-2, y=y-2, dx=dx, dy=dy, width=arr_width, head_width=3 * arr_width, head_length=5 * arr_width, facecolor=(0, 0, 1, 0.5))
plt.savefig(direction_path)
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Local HD Map Demo.')
parser.add_argument('dataroot', type=str, default='dataset/nuScenes/')
parser.add_argument('--version', type=str, default='v1.0-mini', choices=['v1.0-trainval', 'v1.0-mini'])
parser.add_argument("--xbound", nargs=3, type=float, default=[-30.0, 30.0, 0.15])
parser.add_argument("--ybound", nargs=3, type=float, default=[-15.0, 15.0, 0.15])
parser.add_argument("--thickness", type=int, default=5)
parser.add_argument("--angle_class", type=int, default=36)
args = parser.parse_args()
vis_label(args.dataroot, args.version, args.xbound, args.ybound, args.thickness, args.angle_class)